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Abstract

This article considers the important problem of tracking multiple moving targets captured in

image sequences. It has two primary objectives. The first one is to serve as an introduction of the

target tracking problem to the statistical community. It achieves this by providing a common

definition of the tracking problem, a survey of important existing work, and a discussion of

the relative advantages and shortcomings of such work. The second objective is to propose a

statistical method for solving a wide class of tracking problems, namely, when the system of

interest contains birth, death, merging and splitting of targets. The stochastic model behind this

method is continuous time in nature and is equipped with a realistic mechanism for handling

merging and splitting. Its finite sample properties are assessed via numerical experiments.

Finally, the method is applied to two real scientific problems for which it was originally designed

for: the tracking of (i) storms captured in radar reflectivity image data and (ii) vortexes from a

high-resolution simulated vorticity field.

Keywords: Multiple Target Tracking, Merging, Splitting, Multiple Hypothesis Tracking, Track

Estimation, Convective Systems, Turbulence.

1 Introduction

Multiple target tracking is an important problem arising in many scientific and engineering in-

vestigations. It has importance in radar and signal processing, air traffic control, robot vision,

GPS-based navigation, biomedical engineering, and video surveillance to name a few. In this arti-

cle we provide an introduction to and propose a new statistical method for multiple target tracking.

Our work is motivated by the scientific need of storm tracking from radar reflectivity data and vor-

tex tracking in turbulence fields. In these applications, the splitting and merging of targets are
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quite common, and such events are effectively and realistically accommodated by the proposed

method. It is also our hope that this article will stimulate more statistical work to be conducted

in the interesting and exciting area of target tracking.

1.1 Problem Definition

Typically a complete tracking application is composed of two parts. The first part is to extract the

locations and/or other attributes of the targets from each image frame. There is no unified solution

for this, as different targets need different methods for extraction. For example, human faces and

missiles require very different target recognition methods to detect their appearances in an image.

Once the target coordinates are located, the second part of the tracking application is to link these

coordinates together so that coordinates of the same target detected at different image frames are

connected to form a reconstruction of the path that this target traveled. In the tracking literature

this second part of coordinate linking is commonly referred as the data association problem.

For the rest of this article we assume that the target coordinates and/or other useful attributes

have already been extracted from the image sequence and focus on the second step, the data

association. However, we do not assume that these targets are perfectly extracted. That is, we

allow some of the real targets to remain undetected in some image frames (i.e., “missing” targets),

we allow the presence of false alarms, and we also allow the target coordinates to be recorded with

measurement errors. Furthermore, we also assume the occurrences of the following four events.

First, we allow targets to appear for the first time or disappear permanently at any times during

the image sequence. These two events are called birth and death respectively. Second, we permit

situations under which two targets combine together to form a larger target; this is called merging.

Lastly, targets are also allowed to break into smaller pieces; this is called splitting.

In summary, the tracking problem that this article considers is to, given the target information

(coordinates and/or other attributes) acquired by the first extraction phase, recover the path, also

known as track, of each target traveled. In doing so we allow birth, death, merging and splitting

of targets. We also allow missing targets and false alarms. Our approach to this tracking problem

is to first fit a stochastic model that incorporates all variables of interest, including times of birth,
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death, merging and splitting events, as well as target locations. We then estimate their conditional

distribution given the data. Finally, the solution that corresponds to the mode of this estimated

distribution is taken as the tracking estimate.

1.2 Review of the Tracking Problem

We first briefly review some popular methods for tackling the above tracking problem. The reader

is also referred to the books by Bar-Shalom, Li & Kirubarajan (2001), Blackman & Popoli (1999),

and Stone, Barlow & Corwin (1999) for a comprehensive description of modern tracking techniques.

The target tracking problem has been studied extensively in the engineering literature over the

past thirty years. The approaches to this problem can be loosely classified into two groups: non-

statistical and statistical. The non-statistical group mainly use either image differencing techniques

to detect target movements for consecutive images as in Pece (2002), or heuristically minimize

various objective functions that penalize the smoothness of the track estimates (e.g., Sethi & Jain

1987 and Salari & Sethi 1990). Typically these non-statistical methods are fast and simple, and

have been used with some success in the area of storm tracking (e.g., Johnson, Mackeen, Witt,

Mitchell, Stumpf, Eilts & Thomas 1998, Wolfson, Forman, Hallowell & Moore 1999, Dixon 1994,

Tuttle & Gall 1999, Lakshmanan, Rabin & DeBrunner 2003, Hodges 1994, and Hodges 1999).

However, they also possess a serious drawback: their inability to adequately handle birth, death,

missing targets and false alarms. Moreover, these methods are only able to provide track estimates

of the target movements and do not offer any mechanisms for assessing the associated uncertainties.

Hence, for the rest of this article, we shall focus our attention on the statistical approaches.

The main idea is to employ a statistical model to describe the movements of the targets. Once a

target model is proposed, the traditional approach to the data association problem is to then find

the collection of tracks that maximizes the likelihood of the model. In the tracking literature such

a collection of tracks is often called a hypothesis. To achieve such a likelihood maximization, two

major issues are involved: (i) fast calculation of the likelihood value for any given hypothesis and

(ii) an effective search algorithm for locating the hypothesis that maximizes the likelihood function.

In the literature typically a linear Gaussian state space model is applied to address the first
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issue, as it allows for efficient likelihood calculation of a given data association hypothesis via the

Kalman filter. However, methods have also been developed for efficient likelihood calculation for

more general cases. For examples, the extended Kalman filter (Anderson & Moore 1979) is based

on local linear approximations to a nonlinear system, and the unscented Kalman filter (Julier &

Uhlmann 2004) uses higher order approximation to calculate likelihood for nonlinear systems.

Most recently, research in this area has focused on a new class of filtering methods based on

particle filtering or sequential Monte Carlo (Gordon, Salmond & Smith 1993, Kitagawa 1996, Liu

& Chen 1998, Doucet, Godsill & Andrieu 2000 and Doucet, de Freitas & Gordon 2001). This

approach represents the target distribution with a set of samples, called particles, each has its own

importance weight. These particles are then propagated through time to provide an approximation

to the distribution at subsequent time steps. Liu & Chen (1998) develop a sequential importance

sampling framework under which most of these procedures can be unified. Additionally Chen & Liu

(2000) consider a class of models that are conditionally linear and Gaussian. Still other methods

such as the probability hypothesis density method (Mahler 2003 and Vo, Singh & Doucet 2005)

approximate the likelihood by propagating only the posterior expectation instead of the entire

distribution through to subsequent times.

Assuming a method for fast likelihood calculation is available, the next step is to develop a search

algorithm to find the data association hypothesis that maximizes the likelihood of the model. The

most widely used heuristic search algorithm for this purpose is the Multiple Hypothesis Tracking

(MHT) algorithm of Reid (1979). A brief description is given in Section 4.3. We have implemented

a variant of this MHT algorithm for our likelihood maximization; see also Section 4.3.

There is also the Bayesian approach to the data association problem where a prior distribution

is given to the possible data associations. Notice that in this setup the prior is imposed on the data

associations but not on any model parameters. Usually this prior is an uninformative point uniform

distribution over all of the possible associations. This is akin to assuming that the observations of

targets/false alarms at each time are recorded in a random order. The solution is then to calculate

the posterior distribution of the data association hypotheses given the observations. Since this is a

very computationally intensive task, standard MCMC methods are generally too time consuming for
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many applications. To overcome this issue, several particle filter approaches have been suggested

to take advantage of the sequential nature of this problem (Särkkä, Vehtari & Lampinen 2007,

Kreucher, Kastella & Hero 2005, and Vermaak, Godsill & Perez 2005). In Section 4 we have

adopted an MHT approach to approximating this posterior distribution. This is similar in spirit

to the ideas presented in Obermeyer & Poore (2004).

As mentioned earlier, this article is motivated by the scientific need of tracking merging and

splitting targets, such as storms or vortexes. Merging and splitting of targets can be common in

radar applications as well, though in a slightly different context. That is, when two targets are close

together, resolution limits may prevent them from being simultaneously detected. The detection

method will then return only one (or even no) observation for these two targets. This certainly

poses additional difficulties and challenges. Although this is perceived as a very important issue

by Daum (1994) and Blackman (2004), we are unaware of any satisfactory solution to this. Most

existing methods for tracking merging targets are not well defined in terms of an overall probabilistic

model (Trunk & Wilson 1981, Chang & Bar-Shalom 1984, Koch & van Keuk 1997 and Genovesio

& Olivo-Marin 2004).

Up to now the most complete model for merging and splitting targets seems to be the one

presented in Khan, Balch & Dellaert (2005) and Khan, Balch & Dellaert (2006). This model is

appropriate for the situation of unresolved radar measurements discussed above. However, for

the following reasons, this model is inadequate for representing the physical processes that we are

studying in Section 2. First, it does not allow for the birth and death of targets. Second, no

dependence structure is specified to describe the relationship between the merging events and the

corresponding parent target locations. In other words, the model would allow for merging of targets

that are distant apart. Lastly, merging and splitting events are very temporary, in the sense that

newly merged targets are equally likely as any other targets to not be merged in the next image

frame. This is unrealistic for many real problems as when targets merge, they tend to stay merged

for an extended period of time. Therefore, there is a clear need for a tracking method that is

designed to handle all the above issues satisfactorily.
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1.3 The Proposed Method

A major goal of this article is to develop a statistical tracking method that addresses all of the

concerns listed in the preceding paragraph. This method is based on a new continuous time

stochastic model that incorporates birth, death, merging and splitting of targets into the likelihood,

as well as missing targets and false alarms. It also allows us to accommodate other target attributes

(such as size or intensity) to improve the estimation results. Utilizing attribute information has

been shown to increase tracking performance in other applications (e.g., Bal & Alam 2005, Roh,

Kang & Lee 2000, Salmond & Parr 2003, and Angelova & Mihaylova 2006). To the best of our

knowledge, this is the first time all the above events are explicitly built into a stochastic model for

tracking. We note that, although this model is fairly complex and contains different components,

it was designed in such a way that the resulting likelihood function can still be expressed in closed

form and hence can be computed efficiently.

The proposed model is continuous in time which provides two additional advantages. First, it

can be easily applied to irregularly sampled image sequences, and secondly, it allows the asymptotic

properties of the tracking estimates to be studied when the sampling time converges to zero. Al-

though it is beyond the scope of this article to examine these large sample properties, a theoretical

justification for our tracking method is provided in Storlie, Hannig & Lee (2007).

When comparing to existing methods, another advancement of our work is the way that we

handle the static model parameters (e.g. rates of birth and death, noise variances, etc.). There

are many approaches to particle filtering that allow for estimation of static model parameters

along with the state variables (e.g., Andrieu & Doucet 2003, Doucet, de Freitas & Gordon 2003

and Doucet et al. 2001). However, this is rarely applied to multiple target tracking problems,

for which most existing methods assume that many of the key model parameters are known. We

provide consistent estimates of these model parameters and we calculate the distribution of the

data associations given these estimates and the observations. Our approach might therefore be

considered empirical Bayes where, just like the Bayesian approach to tracking, an uniform prior is

imposed on the data associations but not on any of the model parameters.

The rest of this article is organized as follows. In Section 2 we describe two scientific prob-
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lems that motivate our work. The proposed stochastic model is presented in Section 3. Section 4

demonstrates how this model can be applied to provide track estimates of the targets. Finite

sample performance of the methodology is then illustrated on simulated data in Section 5. Sec-

tions 6 and 7 report the tracking results obtained by applying the method to the two original

scientific problems. Lastly concluding remarks and possible future work are given in Section 8.

We remark that there is also an online supplementary document to this article, available at

http://www.stat.colostate.edu/~tlee/tracking/. This document provides additional infor-

mation that we will refer to. These references are always preceded by the letter S. For example,

equation (S.1) refers to the first equation in the supplementary document.

2 Two Motivating Problems

This section describes two scientific problems for which the tracking of multiple targets is an

important step to their solutions. It should be noted that these examples are nonstandard tracking

problems which are meant to serve as a clear illustration of our methodology. However, this

results in a difficulty level that is not necessarily representative of current state-of-the-art tracking

challenges.

2.1 Convective Systems

Figure 1 shows radar reflectivity images evolving over time on July 14, 1996 from 1:00am to 3:30am.

Radar reflectivity is correlated to rainfall intensity so that we can roughly attribute the variation

of color in these images to different rainfall activities. In these images blue indicates 0 inches/hour

of rainfall increasing on a log scale to bright yellow indicating ≥ 2 inches/hour. The images are

separated by 30 minutes.

The targets that we wish to track are the larger convective systems. For our purposes, a convec-

tive system is defined to be a rainfall system that is larger than 100 km in length (approximately

1◦ of latitude or longitude). This problem has been studied previously by Davis, Manning, Car-

bone, Trier & Tuttle (2003). The very short term behavior (less than 1 hour) of such systems are

reasonably well known, but the moderately short term (1 to 6 hours) and long term (1 to 2 days)
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Figure 1: Radar Reflectivity Images Evolving During July 14, 1996

behaviors are still largely unknown. It is certainly desirable for the purposes of climate modeling

to gain a better understanding of the longer term behavior.

A real scientific contribution that can be made then is the validation and improvement of the

storm activity in Regional Climate Models. These are complex computer models for the state of

the atmosphere. These models are used for the prediction of weather and also to generate data
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to answer scientific hypotheses. It is thus necessary for these models to maintain a high degree of

reality in terms of the storms that they produce. Comparing the distribution of storm tracks from

real data to that of the Regional Climate Model is one way to verify this. Hence, a much needed

tool is a procedure that can recover the movements and the interactions of all of the convective

systems.

The merger of two systems that are located at the corner of South Dakota, Wyoming, and

Nebraska can be seen in the first few images. These are clearly separate systems until the third

image, where they are now one system. There is also a splitting event in the panhandle of Florida

as a fairly large system breaks apart into two smaller systems.

2.2 2D Turbulence

The second motivating problem focuses on a 2D turbulence simulation of freely decaying vortexes;

see Figure 2. These images are of a 2D vorticity field with random initial conditions as it develops

over time with no energy loss to the overall system. The white objects are centers of vorticity

rotating in a clockwise direction, whereas the black vortexes have the opposite rotation.

Vortexes of the same spin will coalesce as they move close to each other. There is a good

example of a merger between times 8 and 9 where two white vortexes that are left of center and

below center in the images. Also, vortexes of opposite spin have a tendency to parallel each other

for a while before moving off in different directions. Two vortexes exhibiting this behavior are

called dipoles. An example of dipoling are the two vortexes that are left of center and above center

in the images. They both travel upwards and slightly left during the image sequence.

Recently such image sequences are a subject of much research (Bracco, McWilliams, Murante,

Provenzale & Weiss 2000, Pasquero, Provenazale & Weiss 2002, and Weiss & McWilliams 1993),

as it is a paradigm for anisotropic geophysical and astrophysical turbulence and at the same time

it is also the most computationally accessible example of fluid turbulence. Turbulence remains a

largely open area of research. Automatic tracking of turbulence structures in this simple example is

an important first step to achieve a better understanding of turbulence dynamics in more complex

systems.
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Figure 2: 2D Turbulence Simulation

3 A Stochastic Model for Target Tracking

In this section we propose a stochastic model for solving the above multiple target tracking prob-

lems. Throughout the entire modeling process, we aim to achieve the following two important and

also somewhat conflicting goals: (i) we want to incorporate as much as possible of our physical

understanding of the scientific problems into the model, and (ii) for computational feasibility, we

want the resulting likelihood function to be quickly and accurately evaluated.

Define a path, (X(t), Y (t)), as the coordinates of the centroid of a target at time t. We assume

that the image sequence is sampled from a continuous process at discrete times t = (t1, t2, . . . , tn).
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We shall focus on 2D settings, but our approach can be easily generalized for higher dimensional

problems. We will model the path of any target by a 2D random process. This is complicated

however by the occurrences of birth, death, splitting and merging of targets along with missing

observations and false alarms.

The proposed model consists of the following five sub-models: (i) the Event Model that controls

the birth, death, merging and splitting of targets; (ii) the Observability Model that determines

when a real target is detected or missing; (iii) the Location Model that describes the movements

of the targets; (iv) the Attribute Model that incorporates other characteristics of the targets (e.g.,

size, orientation, or intensity); and (v) the False Alarm Model that handles the occurrence of false

alarms.

3.1 Target Event Model

The Event Model is a continuous time Markov model that determines how and when birth, death,

merging or splitting events occur. The Markov assumption implies that the times between successive

events are independent exponentially distributed random variables. While the best distribution for

modeling event waiting times is problem dependent, the memoryless property of the exponential

distribution does seem to be a realistic assumption for the the storm and vortex problems discussed

above.

In the Event Model the rates at which birth, death, splitting and merging events happen are

given by λb, N(t)λd, N(t)λs, and (N(t) − 1)λm respectively, where N(t) is the number of targets

in existence at time t. It is assumed that the initial number of targets N0 follows a Poisson

distribution: N0 = N(t1) ∼ Poisson(λ0). Notice that the rates of death and splitting events are

proportional to the number of targets in existence. This is because every target has an individual

rate of dying (or splitting) which is independent of other targets. For merging events, it may seem

more natural for the rate to be proportional to
(
N(t)

2

)
, the number of pairs of targets. However, we

adopted (N(t) − 1)λm for the following two reasons. First, if we used
(
N(t)

2

)
, the problem would

not be scale invariant in the following sense. If N(t) is scaled up by a factor of two, then
(
N(t)

2

)
will

be scaled up by a factor of 4 instead of 2. Second, it is also intuitive to use (N(t) − 1)λm as the
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rate. This is because each target should only be merged with its closest neighbor, and there are at

most N(t)− 1 such closest pairs to consider when there are N(t) targets.

The following notation will be used to describe the Event Model

Ub,j = number of births in the interval [tj , tj+1)

Ud,j = number of deaths in the interval [tj , tj+1)

Us,j = number of splits in the interval [tj , tj+1)

Um,j = number of mergers in the interval [tj , tj+1). (1)

We will write U b = (Ub,1, . . . , Ub,n) and similarly for Ud, U s, and Um. Also, denote the collection

of N0 and the U ’s by U = (N0,U b,Ud,U s,Um).

Each target, regardless of its status (e.g., alive or dead), will be uniquely identified by a positive

integer starting from 1. We shall call such integers indices. The initial targets alive at time t1

are arbitrarily labeled with indices 1 through N0. The following actions will be taken at the time

whenever any one of the four possible events happens. When there is a birth the new target will

be given the next available index. For example, if there are already 10 targets in the model (some

currently alive, some could be dead), these targets would have been labeled uniquely with indices

from 1 to 10, and the new target will be given an index of 11. When there is a death, all targets

that are still alive are equally likely to be selected as the one that dies. When there is a split, all

of the living targets are equally likely to be the parent, and the children will be given the next two

available indices. Finally, for merging events all of the possible pairs of all living targets are equally

likely to be the parents, and the child will be given the next available index.

Notice that the assumptions that all pairs of events are equally likely appears to be in contra-

diction to the principle that only close targets are eligible to merge together. We will rectify this

issue in the Location Model to be described in Section 3.3. In short, locations of the parents of a

merger are conditioned to be “close” to each other right before the merger. This shifts the burden

of enforcing the property that “only close targets merge together” to the location model. This

leads to an important simplification of the likelihood calculation since the location model depends
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on the Event Model but not vise-versa.

We will specify which targets were involved in the events by

Vb,j = the collection of indices of targets that were born in the interval [tj , tj+1)

Vd,j = the collection of indices of targets that died in the interval [tj , tj+1)

Vs,j = the collection of triplets (i1, i2, i3) where i1 is the index of the parent and

i2, i3 are the children for every split in the interval [tj , tj+1)

Vm,j = the collection of triplets (i1, i2, i3) where i1, i2 are the indices of the parents and

i3 is the child for every merger in the interval [tj , tj+1). (2)

Let V b = (Vb,1, . . . , Vb,n) and similarly for V d, V s, and V m. The collection of all the V ’s will be

denoted as V = (V b,V d,V s,V m).

Lastly, it should be noted that this is a hidden Markov model in that we do not actually observe

the variables U , and V from the data. Predicting these variables is part of the tracking problem.

This will be described further in Section 4.

3.2 Observability Model

Now we discuss our approach to modeling missing targets, that is, real targets that exist but were

not detected in some image frames. It is certainly not ideal to simply allow these targets to die

when they have escaped from detection and start new paths when they appear again. Instead, for

such a missing target, a good tracking method should be able to impute its existence and return

one single path as its track estimate. In the tracking literature missing targets are usually modeled

using iid Bernoulli random variables. Here we will adopt this approach as well. That is, at any

time t, if a target exists, it has probability Pd of being detected and producing an observation. This

is also assumed independent over time.
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3.3 Target Location Model

When a target is determined to exist by the Event Model, we model the path (Xi(t), Yi(t)) of the

ith target with a Gaussian process, which is commonly used in many tracking applications. We

also assume the target paths are independent of other targets unless they are required to split or

merge as determined by the Event Model. The dependency introduced by splitting and merging

will be described later, and first we present the distribution of Xi(t) under generic conditions.

The distribution of Yi(t) will be similar with the obvious changes in notation and parameters and

independent of Xi(t).

Let the x component of location and velocity of the ith target at time t be denoted by Xi(t)

and X ′
i(t) respectively. Also denote the time of initiation of the ith target by ξi. If the ith target

exists at the first observation time t1, then it is assumed that ξi = t1. Then

Xi(t) = Xi(ξi) +X ′
i(ξi)(t− ξi) + σiGi(t− ξi) (3)

where Gi(t) is some continuous mean zero Gaussian process, for which we have chosen to use an

integrated Brownian motion (IBM). This is sometimes referred to as a nearly constant velocity

model and is popular for target location within the tracking community. In addition, a comparison

of IBM path realizations to those produced by storms and vortexes revealed that the IBM model

was flexible enough to represent these paths well.

The initial position Xi(ξi) and the initial velocity X ′
i(ξi) depend on whether the target resulted

from a birth, merging or splitting event. More detail for each of these cases is given below.

Initial Conditions for a Target Resulting from a Birth Event. Suppose that the ith

target is the result of a birth. It is assumed that the initial position and velocity are Gaussian,

Xi(ξi) ∼ N
(
µX0 , σ

2
X0

)
and X ′

i(ξi) ∼ N
(
µX′

0
, σ2

X′
0

)
. For the two scientific problems described

above, it may also seem reasonable to use a uniform distribution to model the initial location

Xi(ξi). However, very often the likelihood of a uniform distribution can be satisfactorily mimicked

by sufficiently increasing the variance of a normal distribution. Thus we will keep the original

Gaussian assumption for mathematical convenience.
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Initial Conditions for a Target Resulting from a Merging Event. Now suppose that the ith

target is the child resulting from a merging event. Let pi = (pi,1, pi,2) be the vector containing the

indices of the two parents. Suppose for now that size information is available and it is realistic to

model the expected size as a constant as in Section 3.4. Use E(Sj) to denote the mean size of the

jth target. Physically, the initial position or centroid of the child should be the average, weighted

by size, of the positions of the parents at the time of merger,

Xi(ξi) =
(
E(Spi,1)
E(Si)

Xpi,1(ξi) +
E(Spi,2)
E(Si)

Xpi,2(ξi)
)
.

Also, by conservation of momentum, the initial velocity of the child should be the weighted average

of the velocities of the parents at the time of merger,

X ′
i(ξi) =

(
E(Spi,1)
E(Si)

X ′
pi,1

(ξi) +
E(Spi,2)
E(Si)

X ′
pi,2

(ξi)
)
.

If there is no size information available then we can let the initial position of the child be the

simple average of the positions of the parents, plus perhaps a small amount of noise ψm,i. Figure 3

displays a physical representation of this. We can also mimic the conservation of momentum by

taking the child’s velocity to be the simple average of the parent velocities plus noise. This yields

Xi(ξi) =
1
2
(
Xpi,1(ξi) +Xpi,2(ξi)

)
+ ψm,i (4)

X ′
i(ξi) =

1
2

(
X ′

pi,1
(ξi) +X ′

pi,2
(ξi)
)

+ ψ′m,i (5)

where ψm,i ∼ N (0, σ2
Xm

) and ψ′m,i ∼ N (0, σ2
X′

m
). Presumably, σ2

Xm
and σ2

X′
m

are small so that the

new target location and velocity are likely to be close to the averages of the parents.

Parent Locations at the Time of a Merging Event. Notice that in our modeling so far, the

two parent targets are not required to be close to each other at the time of a merging event. To

ensure that the parents move close to each other before merging, the difference between locations

of the parents at the time of merger is conditioned to be small. This is done as follows.

Let d = (d1, d2, d3) be a vector containing the indices of the three targets involved in a merging
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time = ξi − ε

•

•
•

•
•

time = ξi + εtime = ξi

ψm,i

•

[Xpi,1(ξi)+Xpi,2(ξi)]

ψd

1
2

Xi(ξi)

Xpi,2(ξi)

Xpi,1(ξi)

Figure 3: Physical Description of a Merger

event where d1 and d2 are the parents while d3 is the index of the child. Let D be the difference in

location between the two parents at the time of merger plus a noise term,

D = Xd1(ξd3)−Xd2(ξd3) + ψd (6)

where ψd ∼ N (0, σ2
Xd

) and independent of the targets. If σXd
is small, then it is likely that ψd is

small in absolute value. If we then condition the model for Xd1 and Xd2 on the event D = 0, this

will ensure that the parents are only a small distance ψd apart at the time of the merging event.

In Figure 3 once again, we see a merging event with a possible realization of ψd.

In general, there will be Nm =
∑n

j=1 Um,j merging events during the time window [t1, tn]. We

will condition the target paths on all of these mergers in a manner similar to that above. This is

described more precisely as follows. Let Di be the D from (6) and ψd,i be the corresponding ψd for

the ith merging event, i = 1, . . . , Nm. We then condition the model for (X1, . . . , XM ) on the event

{(D1, . . . , DNm) = (0, . . . , 0)}, where M is the total number of targets that existed before time tn.

Here we remark that our approach for handling merging, as illustrated by Figure 3, is a very

realistic physical description of merging targets for many real problems, including the two scientific

problems described earlier.

Initial Conditions for a Target Resulting from a Splitting Event. Suppose that the ith
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target is initiated by a splitting event. That is, this ith target is one of the two children resulting

from a splitting event. To keep notation consistent, let pi,1 be the index of the parent. The location

of a child resulting from a split is modeled by

Xi(t) = Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′s,i

]
(t− ξi) + σiGi(t− ξi) (7)

where ψs,i ∼ N (0, σ2
Xs

) and ψ′s,i ∼ N (0, σ2
X′

s
). Similar to that for merging events, the initial position

and velocity of a new child from a splitting event is the same as that of the parent plus a random

error. It is assumed that σ2
Xs

is small so that the new targets are likely to appear close to where

the parent split. Similarly, σ2
X′

s
should be small so that the new targets have a velocity similar to

that of their parent.

If size information is available then the conservation of momentum assumption can also be

imposed on the two new paths from the children splitting off from the parent. This can be achieved

by conditioning in a similar manner as for parent locations at the time of a merging event.

Measurement Error. Due to imperfect detection or some other reasons, we do not always observe

the exact locations of the targets. Rather, instead of Xi(t), we observe a noisy version of it. We

shall assume that the measurement errors are additive, Gaussian and independent over time. That

is, for j = 1, . . . , n, we observe

X∗
i (tj) = Xi(tj) + εi,j with εi,j

iid∼ N (0, σ2
Xe

).

3.4 Target Attribute Models

In this section we will describe several models that can be applied in conjunction with the Event

and Location Models to improve the tracking results when some auxiliary information about tar-

get attributes is available. We shall present a few special cases of attributes that are commonly

available: size, orientation and intensity. Other attributes may be handled in a similar manner.

Size. In the 2D case, the size of a target is the area and, similar to the approach in Angelova
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& Mihaylova (2006), we will use the length of the minor and major axes, R1(t) and R2(t), of the

best fitting ellipse of the target to characterize it (see Figure 4). We will assume that a best fitting

ellipse for each target has already been obtained; e.g., by standard imaging techniques as described

in Rosenfeld & Kak (1982).

R1
R2

Target

Best Fitting
Ellipse

Q2

Figure 4: R1, R2, and Q2

Let R1,i(t) and R2,i(t) be the minor and major radii respectively for the ith target at time

t. These two quantities R1,i(t) and R2,i(t) will be modeled as log-normal random variables with

parameters (µR1,i , σ
2
R1,i

) and (µR2,i , σ
2
R2,i

) respectively. The log-normal distribution is commonly

used to describe the distribution of lengths (Wang & Lee 2006). These observations are also assumed

to be independent over time. One could certainly make other more realistic assumptions, such as

allowing the size of a target to change as a positive continuous process. However, this assumption

leads to complications in the likelihood calculation when there are splitting and merging events.

This in turn drastically increases the computational load so we will not consider this option further.

Intensity. For many tracking problems, the intensity I(t) of a target can be defined in various

meaningful manners. For example, for the storm application, it can be defined as the maximum

rainfall rate, the average of rainfall rates, or even some combination of the two. Such intensities

can be modeled in a manner similar to size. We can assume some appropriate random process for

the observations. For the storm application in Section 6, the intensity did not seem to change much

over time, and we found that treating the observations as iid from a lognormal distribution was

adequate.
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Orientation. The orientation of a target can be measured by the angle, Q2 of the major axis

corresponding to R2 as shown in Figure 4. We assume that Q2 follows a von Mises distribution on

[0, π] with parameters αi and βi (Fisher 1995). As with intensity and radii, we assume that Q2(t)

is iid over time in the storm application of Section 6.

3.5 False Alarm Model

The modeling of false alarms, also known as clutter, is divided into three parts (event, location and

attributes) in a manner similar to that for targets.

False Alarm Event and Location. In most existing tracking methods, the number of false alarms

in each image is assumed to be Poisson while the locations are typically assumed uniform throughout

the image. This is equivalent to a homogeneous spatial Poisson process (Diggle 2003). We will also

assume that the distribution of false alarms is a spatial Poisson process (possibly heterogeneous)

that is independent over time with intensity function ρ(x, y). In addition, we recommend using

ρ(x, y) = λf [Xi(ξ)](x)[Yi(ξ)](y), where [Xi(ξ)] is the density of the initial x-location of a target

resulting from a birth, and similarly for [Yi(ξ)] with respect to the y-location. This is to ensure

that the contribution of the initial location to the likelihood will not influence the probability that

an observation is a target versus a false alarm; see Section 4. Notice that λf is then the expected

number of false alarms at each time point. Unlike the case for real targets, there is no need for an

Observability Model for false alarms, as “missing false alarms” will never exist.

False Alarm Attributes. If any attributes are used to model the real targets, they must also be

used to model the false alarms. This is to guarantee that the likelihood computed by assuming a

group of sequential observations originated from a real target would be comparable to the likelihood

computed by assuming the same observations were false alarms. We also propose that a false

alarm attribute have independent and identical distribution for each false alarm occurrence. The

conceptual reason for the identical distribution is that all of these false observations are artifacts

of the same device. Hence it is reasonable to assume the parameters are the same.
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4 The Tracking Estimate

In this section we formally define the estimand of our tracking problem and propose a method for

estimating it. The setup for this problem is as follows. We collect data at the following times

t1, . . . , tn. At the jth time step mj observations are detected from the jth image frame. Each of

these mj observations is either a real target or a false alarm. Let Zi(tj) be the ith observation at

time tj , i = 1, . . . ,mj . Each Zi(tj) is a vector of the location values for either a target or a false

alarm. Depending on the problem, it may also include the values of attribute variables.

Let Z = {Zi(tj) : j = 1, . . . , n; i = 1, . . . ,mj} be the collection of observations at all times.

From our data, Z, we need to decide whether each observation, Zi(tj), was originated from a real

target or a false alarm. In addition, if it was from a real target, we also need to decide which target

it should be assigned to. Note that each observation can be assigned to only one target and each

target can only have one observation assigned to it. We will create the variable pi(tj) to be the

index of the target that observation Zi(tj) was originated from. We can define the index for a false

alarm to be 0.

Write P = {pi(tj) : j = 1, . . . , n; i = 1, . . . ,mj}. So for a given Z, P will specify the tracks of

each target. On top of that we must also specify the events (births, deaths, splitting and merging)

that occurred with the variables U and V defined in (1) and (2) respectively. The variables U

and V together with P will denote a solution to the tracking problem. Let our estimate of the

tracking solution (U ,V,P) be denoted (Û , V̂, P̂). Notice that in the usual statistical terminology

this is actually called a prediction problem, since (U ,V,P) is a random variable in our framework.

We chose to call it the tracking estimate instead of the tracking prediction to avoid the potential

confusion with track prediction (of future target locations).

4.1 Calculating (Û , V̂ , P̂)

First we delay the issue of parameter estimation to Section 4.4, and assume for the moment that

all the parameters in the model, such as λ0, λb, . . . , Pd, σi’s etc., described in Section 3 are known;

see the first paragraph in Section S.6 for a complete listing of the model parameters. We will use

the notation [X] to denote the probability density function of the random variable X, [X](x) to
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denote [X] evaluated at x and [X | Y ] to denote the conditional density of X given Y .

To achieve our tracking estimate, we compute the conditional density of (U ,V,P) given Z,

[U ,V,P | Z = z](u, v, p). (8)

Note that this is a probability mass function since the variables (U ,V,P) are discrete. This can be

computed fairly efficiently because the likelihood of our model conveniently factorizes into several

conditional densities. See Section S.3 for details.

From this it is natural to define our tracking estimate as

(Û , V̂, P̂) = arg max
u,v,p

[U ,V,P | Z = z](u, v, p). (9)

Even more, we can calculate the probability that (Û , V̂, P̂) is the correct solution given the data Z

as [U ,V,P | Z = z](Û , V̂, P̂).

A common but major difficulty in most problems is that it is not computationally feasible to

enumerate all possible tracking solutions and calculate their likelihood values. To overcome this

issue, we have developed a variant of the Multiple Hypothesis Tracking (MHT) algorithm of Reid

(1979), the details of which are described in Section 4.3.

Our MHT algorithm will locate an approximation to the solution that maximizes (8), and hence

it will provide an point estimate (Û , V̂, P̂) to our tracking problem. Furthermore, by providing

an estimate of the density function (8), this MHT algorithm will also allow us to make various

probability statements about the solution. This is achieved as follows. Upon completion the MHT

algorithm provides approximately the K best solutions; i.e., those with highest likelihood values.

We will discuss the choice of K in the next subsection. Label these K solutions (ui, vi, pi) for

i = 1, . . . ,K and let K denote the set of these K solutions. If we assume that the correct solution

is in K, then we can calculate the conditional density of (U ,V,P) given Z = z and the event

(U ,V,P) ∈ K,

[U ,V,P | Z, (U ,V,P) ∈ K](u, v, p | z). (10)

In practice we can then compute the distribution given in (10) to approximate that in (8).
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4.2 Confidence Sets

Equation (8) provides the distribution of all possible tracking solutions given the data Z, which

is much more informative than just the estimate (Û , V̂, P̂). For example, by summing over the

relevant probabilities, we could calculate the probability that a given observation is a target or

a false alarm, or the probability that two targets merged, etc. Another innovative use of (8) is

confidence set construction. That is, we could construct a confidence set C in the sense that the

probability that C contains the correct solution is ≥ (1 − α)100%. A major challenge for this is

how to summarize and display all elements (i.e., different solutions of paths) in C in a meaningful

and informative manner. We will report our work on this topic in a future paper.

4.3 A Modified MHT Algorithm

We have modified the MHT algorithm of Reid (1979) to approximate our tracking solution (9).

Major steps of this modification are described next while a more detailed description is given in

Section S.4. However, we shall begin with a brief description of the original MHT algorithm of

Reid (1979).

First we note that in the tracking literature a possible solution to a tracking problem is also

called a hypothesis, and hence the name of the algorithm. The original MHT algorithm assumes

that an objective function (e.g., likelihood) has been constructed for evaluating the score of any

solution at any time step. It processes the data sequentially. At each time step t it keeps a set

of the K hypotheses with highest likelihood, where K is pre-specified by the user. Then at the

next time step t+ 1 it forms the collection of all feasible hypotheses given the new data for each of

the hypotheses from the previous time t. It then prunes the list of the new hypotheses back to K

of them, by eliminating those that have low scores. The algorithm continues in a similar fashion

until the data sequence finishes. At the end of the algorithm K sets of tracking estimates will be

obtained and the one that corresponds to the best score value will be taken as the final tracking

estimate.

Here is an overview of our modified MHT algorithm. For all of the details including “gating”

procedures and other computational efficient shortcuts see Section S.4. At time t1, the beginning of
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the image sequence, we consider all combinations of each observation either treated as a real target

or a false alarm. Thus if there are m1 initial observations, then there are 2m1 possible combinations.

Now imagine that we have a set of solutions for the observations through time tj−1. We then take

the new observations Zj at time tj to form updated solutions based on all possible combinations of

the following possibilities: we assume that each observation Zi(tj) ∈ Zj is either (i) an observation

from an existing target track, (ii) the first observation from a target resulting from birth, (iii) the

first observation from a target resulting from split, (iv) the first observation from a target resulting

from merger, or (v) a false alarm. We also assume that any existing track that does not receive a

new observation must either (i) become (or stay) missing or (ii) terminate.

To reduce computational load, we only keep a subset of the new solutions (those with the highest

likelihood) to form solutions for the next time step tj+1. The actual number of solutions K that we

keep through to the next time step is determined by the following. Let Lj be the likelihood value of

the best solution at time tj . At each time step tj , we keep only solutions that have likelihood values

greater than cLj , where c < 1 is a user-defined parameter. In addition we limit the total number

of hypotheses kept to be less than Ks. In our implementation we set c = e−10 and Ks = 200.

4.4 Incorporating Estimation of Static Model Parameters

Up until this point case we have assumed the values of all static model parameters to be known.

This is the approach that is taken by most tracking methods. Here we consider the more realistic

case that these parameter values are unknown. First we collect all the static model parameters

such as λ0, λb, σ2
i , etc. into the vector θ and write the density in (8) as [U ,V,P | Z]θ to explicitly

represent the dependence on θ.

To estimate θ, one could use maximum likelihood, or any other suitable estimates; see Sec-

tion S.5. Since these estimates depend on the variables (U ,V,P), we could allow each of the

solutions (u, v, p) that we consider in the above modified MHT algorithm to have its own parame-

ter estimate which we denote θ̂(u, v, p). Notice that this will lead to an overly optimistic likelihood

value

[U ,V,P | Z]θ=θ̂(u,v,p)(u, v, p | z) (11)
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for each of the solutions. However, based on the work of Storlie et al. (2007), it can be shown under

certain conditions that as the time between observations tends to zero,

(Û , V̂, P̂) = arg max
u,v,p

[U ,V,P | Z]θ=θ̂(u,v,p)(u, v, p | z) (12)

is equal to (U ,V,P) eventually almost surely. Hence we use the distribution defined in (11) to

calculate likelihood values within the MHT iterations and to decide which solutions that we shall

keep for propagation to the next time step.

Although the function in (11) is useful for calculating the point estimate (Û , V̂, P̂), it is not a

good approximation of the distribution in (8). This is because each argument, (u, v, p), is given its

own estimated value for θ which introduces a bias that remains even asymptotically. In order to

estimate (8), we can however use [U ,V,P | Z]θ=θ̃ where θ̃ is a consistent estimator of θ. This will

ensure that the probabilities given by [U ,V,P | Z]θ=θ̃ have a frequentist interpretation, at least in

an asymptotic sense. A natural candidate for θ̃ is given by θ̃ = θ̂(Û , V̂, P̂). As long as the estimator

θ̂(U ,V,P) is consistent, then θ̂(Û , V̂, P̂) is also consistent by the result given in Storlie et al. (2007)

mentioned above.

Thus, if the MHT algorithm finishes with K solutions {(ui, vi, pi)}K
i=1 at the last step, we could

use {
[U ,V,P | Z, (U ,V,P) ∈ K]θ=θ̂(Û , V̂, P̂)(ui, vi, pi | z)

}K

i=1
(13)

as an estimate of (8) to allow us to make various probability statements concerning our final tracking

estimates. We used (13) to compute the probabilities to be reported in Figure 5 and Section S.6.

Lastly we remark that in practice the researcher can, based on physical consideration on the

tracking problem at hand, impose various limits on the parameter estimates. This will serve to limit

the amount of bias introduced into the approximation given in (13). For example, the researcher

is usually familiar with the range for the number of targets and/or false alarms so that effective

limits can be imposed for the corresponding model parameters. This is certainly an improvement

over the need for specifying these parameter values exactly.
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4.5 Summary

Here we summarize the major steps of the proposed tracking method:

1. To initialize the algorithm consider all combinations of each observation from Z1 either treated

as a real target or a false alarm. Denote the set of these combinations as K1. Set t = 2.

2. With Zt and Kt−1, obtain the set of all possible solutions for time {1, . . . , t} by enumerating

all the possibilities listed in the third paragraph of Section 4.3.

3. Calculate the likelihood values for all these solutions using (11). Keep the K solutions that

have the K largest likelihood values, where K is determined by the method described in the

last paragraph of Section 4.3. Collect these K best solutions into Kt.

4. Increment t and repeat Steps 2 and 3 until all Zt are processed. Denote the last set of tracking

solutions as Kn.

5. Take the solution from Kn with the highest likelihood value as the final tracking estimate.

In addition, using (13) one could use all members of Kn to provide an estimate for the

distribution (8).

5 Simulated Data Results

In this section, we present the results of the above proposed tracking method on a simulated data

set. For a full description and discussion of more extensive simulation results, see Section S.6 of

the online supplementary document.

In this example, the data Z are assumed to come from the model described in Section 3. The

random motion component Gi(t) is an integrated Brownian Motion for all targets. The event

parameters are set at λ0 = 4, λb = 0.1, λd = 0.02, λs = 0.06, λm = 0.08 and λf = 8.0. All

parameter values were chosen to mimic the rainfall data of Section 6. Values for other model

parameters along with the limits imposed on the parameters for the purposes of estimation are also

given in Section S.6.
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A realization from this model is shown in Figure 5. All the observations from all time steps are

plotted together in one plot. Observations from time tj are labeled ’tj ’. The correct solution and the

top four alternative solutions are provided along with their estimated probabilities approximated

by (10). In this example we would be about 90% confident that our point tracking estimate is the

correct solution. In fact, our estimate is the correct solution in this case.
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Figure 5: Tracking estimates of the proposed method on simulated data.
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6 Application to Rainfall Data

Here we consider tracking the storms that evolve during the morning of July 14, 1996 in the images

of Figure 1. We will utilize available attribute data: size (radii of best fitting ellipse) and orientation.

It can be concluded from the simulation results of Section S.6 that attribute information can be

very beneficial for tracking estimation.

For the purposes of this problem, we are interested in tracking the mesoscale convective systems,

which are usually defined to be storms with major axis longer than 100 km. This corresponds to

roughly 1◦ latitude or longitude in Figure 1. Before we can track the storms, we must first identify

them from the images and measure their location and attributes. An effective detection algorithm

was used for this step and is described in Section S.7.

Recall that the images in Figure 1 are separated by 30 minutes. So this small illustration covers

a time span of 2.5 hours. Figure 6 shows the same images as in Figure 1 after the initial processing

of the detection algorithm. It is the ellipses in these images that we will actually track.

Figure 7 shows the results of applying the proposed tracking method to the images in Figure 6.

The limits for parameter estimation were set to the same as those in the simulations of Section S.6.

The estimated tracks of the storms given by the tracking algorithm are displayed in black. Whenever

there is a merging event an orange line is drawn connecting the parents to the child. Whenever

there is a splitting event a magenta line is drawn connecting the parent to the children.

Notice that the estimate recovers the merging event that occurred between 1:00am and 1:30am,

where the two storms in the south west corner of South Dakota merged together into one storm.

Also in this same time interval, the large system over Alabama and the panhandle of Florida split

into two smaller systems. The reader is also referred to the same website that contains the online

supplementary document (end of Section 1) to see a video of the raw data, the processed data, and

the tracking solution with the path lines. The corresponding links from the above webpage are

Rain Fall Video, Cleaned Rainfall Images, and Paths Given by Tracking Algorithm. These videos

cover a longer time span as well, from 1:00am to 1:00pm on July 14, 1996.
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Figure 6: Best Fitting Ellipses of Radar Reflectivity Images

7 Application to 2D Turbulence

Here we consider tracking the vortexes in the 2D turbulence simulation displayed in Figure 2. We

will again utilize the size information but forgo the use of orientation, since all of the vortexes are

nearly circular. The detection algorithm used to identify the vortexes is similar to that used for

the storms in Section 6.

28



Figure 7: Best Fitting Ellipses with Estimated Paths Superimposed

Figure 8 shows the resulting (Û , V̂, P̂) after applying the tracking algorithm to the processed

data of Figure 2. Recall that the black vortexes are spinning in a counterclockwise direction while

the white vortexes are spinning in a clockwise direction. The red lines indicate the paths of black

vortexes, while blue lines indicate the paths of white vortexes. Merging events are indicated by

orange lines for black vortexes and green lines for white vortexes. There is no splitting of targets
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in this problem.

A good example of a merging event can be found between frames 8 and 9. In addition, the

tracking algorithm was able to capture the fact that one of these vortexes was missing (not found

by the detection algorithm) for two frames just prior to the merging event. This is illustrated by a

continuous path line where the vortex disappears for two frames.

The same website given at the end of Section 1 above also contains the corresponding video

of the raw data given by the link 2D Turbulence Video. Videos of the best estimate path lines

superimposed on the cleaned images as well as on the raw images are given by the links Vortex

Paths on Cleaned Images and Vortex Paths on Raw Images respectively.

Figure 8: 2D Turbulence Simulation
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8 Conclusions & Further Work

In this article we have presented an introduction to multiple target tracking. We have also developed

a new stochastic model that incorporates the events of birth, death, splitting and merging of

targets into the likelihood, as well as missed detections and false alarms. Track estimation is then

accomplished by considering the distribution of the relevant variables given the data.

The results obtained by the simulated data provides strong evidence that this estimation proce-

dure works very well even under the presence of false alarms and missing observations. The utility

of the method was also demonstrated on two non-standard applications: radar reflectivity data

collected over the United States and vortexes in 2D turbulence images. A future project is to apply

the method to other more difficult tracking applications, such as smaller scale convective systems

(thunder storms) and/or missile target tracking.

For multiple target tracking estimation, there remain many challenging and interesting problems

that are particularly suited for statisticians to tackle. As a first example, it would be useful to de-

velop a procedure for sampling rate determination for tracking problems. That is, to automatically

determine how frequent should one collect the data.

Secondly, what would be the best approach to incorporate and utilize target attribute informa-

tion when they are available? In this article we have used an ellipse to represent shape. Previously,

Isard & Blake (1998) use curve segments to model target shape, allowing them to change over time,

and Wang & Zhu (2004) decompose an image into basis functions, called tokens, and group these

tokens together to form targets, again allowed to deform over time. However, all these methods are

very much problem dependent. It would be advantageous to develop a statistically sound principle

to guide us on how to incorporate attribute information into the tracking solutions.

It would also seem very beneficial to combine the detection problem with the tracking problem.

This is because the inherent spatio-temporal dependency provides additional information to help

the detection algorithm to predict where targets are more likely to exist in successive images. Some

work has been done in this direction (e.g., Tonissen & Bar-Shalom 1998, Salmond & Birch 2001,

Kreucher et al. 2005 and Boers, Driessen, Torstensson, Trieb, Karlsson & Gustafsson 2006), but

the tracking models adopted tend to be relatively simple.
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Lastly, virtually no rigorous attempts have been made to theoretically justify the use of any

particular tracking methods. Although, as a first step, Storlie et al. (2007) investigate some theo-

retical properties of the estimates described in this article, there is still much more theoretical work

to be done to further the understanding of the multiple target tracking problem. Statisticians are

well equipped to answer these questions (especially the last one), and it is our hope that this article

can stimulate further statistical investigations in various aspects of the multiple target tracking

problem.
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This document provides many of the technical details of the model proposed in the main article

in addition to some more in-depth discussion.

S.1 Calculation of Model Likelihood

In this Section we present the likelihood of the model described in Section 3. We will use the

notation [X] to denote the probability density function of the random variable X, [X](x) to denote

[X] evaluated at x and [X | Y ] to denote the conditional density of X given Y . We wish to write

out the density, or likelihood, for the following collection of random variables that correspond to

targets,

(U ,V,W,X ,Y).

The bold W, X ,and Y denote the collection of those variables for all targets at all times. These

variables will be more formally defined in the following sections. For ease of presentation, we first

restrict the focus to location information. We will incorporate the attribute contribution to the

likelihood later.

In addition, we wish to write out a density for the following collection of random variables that

correspond to false alarms

(N f ,X f ,Yf ), (S.1)
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where N f = (Nf (t1), . . . , Nf (tn)) and the bold X f and Yf denote the collection of the locations

for all false alarms at all times. The overall model likelihood function is then given by

[(U ,V,W,X ,Y), (N f ,X f ,Yf )] = [U ,V,W,X ,Y][N f ,X f ,Yf ],

as the false alarms are assumed to be completely independent of the targets. In the following

sections we will write out the target density, [U ,V,W,X ,Y], and and the false alarm density,

[N f ,X f ,Yf ].

S.1.1 Target Density

Since X and Y are independent given (U ,V,W), we can write the target density as

[U ,V,W,X ,Y] = [U ,V] · [W | U ,V] · [X | U ,V,W] · [Y | U ,V,W]. (S.2)

We will call the conditional densities in (S.2), in order from left to right, the target event density,

observability density, and target location densities respectively. We will describe each of these in

the following sections.

S.1.1.1 Target Event Density

Since the Event Model has independent increments, the Event density can be written as

[U ,V] = [N0]
n∏

j=1

[Ub,j , Ud,j , Us,j , Um,j | N(tj)][Vb,j , Vd,j , Vs,j , Vm,j | N(tj), Ub,j , Ud,j , Us,j , Um,j ],

(S.3)

where recall that N(t) is the number of targets that exist at time t. Also, N0 is the initial number

of targets and is assumed to be Poisson distributed with parameter λ0. Therefore

[N0](k) =
λk

0e
−λ0

k!
.

To write out the exact density for (Ub,j , Ud,j , Us,j , Um,j | N(tj)) is difficult since they are dependent

on each other. The rate of death, λdN(t), for example changes when there is a birth, death, split or

2



merger. Suppose Uj = Ub,j +Ud,j +Us,j +Um,j . The exact distribution of (Ub,i, Ud,i, Us,i, Um,i) would

require us to sum over all the permutations of the order that the Uj events could happen in the

interval [tj , tj+1). For each of these permutations, we would have to calculate the probability that

the sum of Uj independent exponential random variables with respective rates (which are generally

different) would be less than ∆tj = tj+1 − tj . Instead, we will approximate this probability by

assuming that the rate of the occurrence of events stays constant during the interval [tj , tj+1). If

we let N̄j = (N(tj) +N(tj+1))/2, which is the average number of targets alive during the interval,

then we can assume that the rate of each of the events during the interval is λ̄b,j = λb, λ̄d,j = λdN̄j ,

λ̄s,j = λsN̄j and λ̄m,j = λm

(
N̄j − 1

)
for birth, death, splitting, and merging events respectively.

With this assumption, the variables (Ub,i, Ud,i, Us,i, Um,i) are independent and P (Ud,j = u) for

example is the probability that the sum of u iid exponential random variables with rate λ̄d,j are

less than ∆tj . This is the same as the Poisson density with parameter λ̄d,j∆tj evaluated at u.

Hence,

[Ub,j | N(tj)] (u) ≈ (λb∆tj)ue−λb∆tj/u!

[Ud,j | N(tj)] (u) ≈ (λ̄d,j∆tj)ue−λ̄d,j∆tj/u! (S.4)

[Us,j | N(tj)] (u) ≈ (λ̄s,j∆tj)ue−λ̄s,j∆tj/u!

[Um,j | N(tj)] (u) ≈ (λ̄m,j∆tj)ue−λ̄m,j∆tj/u!

Under the same assumption that N(t) = N̄j is constant during the interval [tj , tj+1), we have

[Vb,j | N(tj), Ub,j ] (v) ≈ 1

[Vd,j | N(tj), Ud,j ] (v) ≈ (1/N̄j)Ud,j

[Vs,j | N(tj), Us,j ] (v) ≈ (1/N̄j)Us,j

[Vm,j | N(tj), Um,j ] (v) ≈
(

1/
(
N̄j

2

))Um,j
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and we can write (S.3) as

[U ,V] ≈ [N0]
n∏

j=1

[Ub,j ][Vb,j | Ub,j ] · [Ud,j ][Vd,j | Ud,j ] · [Us,j ][Vs,j | Us,j ] · [Um,j ][Vm,j | Um,j ]. (S.5)

S.1.1.2 Observability Density

Recall that Wi(t) represents the observability (0 or 1) of the ith target at time t, i = 1, . . . ,M

where M is the number of targets that existed before time tn. Let W = {Wi(tj) : i = 1, . . . ,M, j =

1, . . . , n} The time of initiation of the ith target is denoted by ξi. Also let the time of termination

of the ith target be given by ζi. For convenience if the ith target is still alive at time tn, we will let

ζi = tn.

The events variables U and V do not specify the exact values of ξi and ζi. They do however

specify which interval between observations they are in. This completely specifies W since its

dependence on U and V is only on whether or not a target exists at the observed time points. In

the sequel, if it is known that ξi is in the interval (tj , tj+1), we will set ξi = tj + ∆tj/2.

The white noise model for W of Section 3.2 assumes probability Pd of observing the ith target

if it exists at a given time, independent of other times. If the target does not exist at time t then

Wi(t) = 0. Under this model, the conditional density of W given the event variables in (S.2) can

be written out using indicator functions to separate the cases when the ith target exists and when

it does not. This density is then given by

[W | U ,V](w) =
M∏
i=1

n∏
j=1

{
I[t1,ξi)∪(ζi,tn](tj)(1− wij) + I[ξi,ζi](tj) ((1− wij)(1− Pd) + wijPd)

}
,

where wij is representing an observed value of Wi(tj).

S.1.1.3 Target Location Density

Since Xi(t) is normally distributed for all t, the observed location of all targets at all time points has

a multivariate normal distribution. Let the times at which the ith target is observable be denoted

by ti = (ti,1, . . . , ti,ni). Also let Xi = (Xi(ti,1), . . . , Xi(ti,ni))
′ and lastly let X = (X ′

1, . . . ,X
′
M )′

be the collection of all observed locations of all targets during the time sequence t1, . . . , tn. Then
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X ∼ N (µX ,ΣX), where we will define µX , and ΣX below.

Recall from Section 3.3 that this mean and covariance will depend on the time of initiation, ξ,

of the targets. We will adopt the convention of the previous section here and set ξi = tj + ∆tj/2

if ξi is known to be in the interval (tj , tj+1). Since µX and ΣX depend on the exact values of ξ,

this will be an approximation to the true density. In order to calculate the exact density, we would

need to integrate out on the joint distribution of X and ξ, given that the ξi’s are in their respective

intervals. Most likely this can only be achieved via numerical approximations.

Also recall from Section 3.3 that we need to condition X on the random variables (D1, . . . , DNm)

and evaluate this density when they are zeros. Let D = (D1, . . . , DNm)′, and we write

D ∼ N (µD,ΣD).

For the collection of both X and D we have

(
X
D

)
∼ N (µ,Σ) (S.6)

where

µ =

(
µX

µD

)
(S.7)

and

Σ =

(
ΣX ΣX,D

Σ′
X,D ΣD

)
.

The mean vectors and covariance matrices will be described in the following. Let µi(t) = E{Xi(t)}

and µDi = E(Di). These functions are given for the IBM model in Section S.2. Then let µi =

(µi(ti,1), . . . , µi(ti,ni) and we can now write the mean vectors in (S.7) as µX = (µ1, . . . ,µm) and

µD = (µD1 , . . . , µDNm
).

Define the matrices Σi,j to be the covariances between all of the observations of target path i

with all of the observations of path j. Specifically the (k, l)th element of this matrix can be written

as

Σi,j(k, l) = Cov(Xi(ti,k), Xj(tj,l)), k = 1, . . . , ni; l = 1, . . . , nj . (S.8)
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Also define the matrices Σi,D and ΣD by their (k, l)th element as follows

Σi,D(k, l) = Cov(Xi(ti,k), Dl) k = 1, . . . , ni; l = 1, . . . , Nm (S.9)

ΣD(k, l) = Cov(Dk, Dl) k = 1, . . . , Nm; l = 1, . . . , Nm. (S.10)

The covariance functions in (S.8), (S.9), and (S.10) for the IBM model are given in Section S.2.

Now we can write the covariance matrix for X as

ΣX =


Σ1,1 Σ1,2 · · · Σ1,m

Σ2,1 Σ2,2 · · · Σ2,m

...
...

. . .
...

Σm,1 Σm,2 · · · Σm,m


and that for (X ,D) as

ΣX,D =


Σ1,D

...

Σm,D


This completes the description of the distribution of (X ,D) given in (S.6).

We can then compute the conditional distribution of X given D = 0, which we will just call the

distribution of X from this point onward. From standard multivariate normal theory we have

X | D = 0 ∼ N (µ∗,Σ∗)

where

µ∗ = µX − ΣX,DΣ−1
D µD and Σ∗ = ΣX − ΣX,DΣ−1

D Σ′
X,D.

The density of X is then just the multivariate normal density with parameters µ∗ and Σ∗. This

will require computing the inverse of Σ∗, which can be done quite efficiently since Σ∗ is a relatively

sparse matrix. Unless path i is a relative of path j, in the sense that one is a by-product of splitting

or merging of the other, they will have 0 covariance. Unfortunately, because of the conditioning

on D, this model cannot be posed in state space form. Hence, the corresponding filters cannot be

used to update the conditional distribution of a new observation given the previous observations.
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S.1.2 False Alarm Density

In a manner similar to target density we can write the density of the false alarm variables from

(S.1) as

[N f ,X f ,Yf ] = [N f ] · [X f ,Yf | N f ] (S.11)

where N f , X f , and Yf will be precisely defined below. It was assumed in Section 3.5 that false

alarms occur at each time frame as iid realizations from a Poisson Process with intensity function

ρ(x, y). Hence N f = (Nf (t1), . . . , Nf (tn)) are iid Poisson distributed random variables with rate

λf =
∫
ρ(x, y)dxdy The corresponding density of N f is then

[N f ](k) =
n∏

j=1

λ
kj

f e
−λf

kj !
.

Now let the x component of the ith false alarm at time t be denoted asXf,i(t) for i = 1, . . . , Nf (t).

Also let X f = {Xf,i(tj) : i = 1, . . . , Nf (tj), j = 1, . . . , n} be the collection of x locations of all false

alarms at all times. Similar notation will be used for Yf . Due to the Poisson process assumption,

the density function for a particular (Xf,i(t), Yf,i(t)) is f(x, y) = ρ(x, y)/λf and hence the density

for (X f ,Yf ) is

[X f ,Yf | N f ](x) =
n∏

j=1

Nf (tj)∏
i=1

ρ(xij , yij)/λf ,

where xij is a dummy variable for the value of Xf,i(tj) and similarly for yij .

S.1.3 Attributes

The attribute variables are assumed iid over time given the Observability variable W, thus the

densities are quite straightforward to calculate. With the presence of attributes, we now have the

following collection of random variables for targets

(U ,V,W,X ,Y,A),
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whereA denotes the collection of all attribute variables. Below we will assumeA = (R(1),R(2),Q(2), I),

which are the smallest radius, largest radius, angle of orientation and intensity for targets respec-

tively. These variables will be formally defined later.

We also have the following collection of random variables that correspond to false alarms:

(N f ,X f ,Yf ,Af ),

where Af = (R(1),f ,R(2),f ,Q(2),f , If ), which are the same variables as above but for false alarms.

The target likelihood function is then given by

[U ,V,W,X ,Y,A] = [U ,V] · [W | U ,V] · [X | U ,V,W] · [Y | U ,V,W] · [A | W].

So we can just multiply [A | W] to the target density without attributes given in (S.2). Technically

A should also be conditioned on U , V, X , and Y as well, but given the way that we modeled

attributes in the previous section, the density of A would still depend only on W, and hence we

dropped the other variables in the notation. Similarly, the false alarm likelihood is given by

[N f ,X f ,Yf ,Af ] = [N f ] · [X f | N f ] · [Y | N f ] · [A | N f ]

so we can just multiply [A | N f ] to the false alarm density without attributes in (S.11). Therefore

the overall density is

[(U ,V,W,X ,Y,A), (N f ,X f ,Yf )] = [U ,V,W,X ,Y,A] · [N f ,X f ,Yf ,Af ]. (S.12)

We can of course incorporate any of these attribute variables separately or add other attributes

in a similar manner. For the collection above though, we have

[A | W] = [R(1),R(2) | W][Q(2) | W][I | W]
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and

[A | N f ] = [R(1),f ,R(2),f | N f ][Q(2),f | N f ][If | N f ].

We will describe these densities in the following sections.

S.1.3.1 Radius Density

Let R1,i(t) and R2,i(t) respectively be the length of minor and major axes of the best fitting ellipse

to target i at time t. We only observe the min and max of these from the data which are R(1),i(t)

and R(2),i(t) respectively. Also let

R(1) = {(R(1)(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}

and similarly for R(2), where recall M in the total number of targets that existed before time tn.

Recall that R1,i(t) and R2,i(t) are assumed to be distributed as independent log-normals for all

t. The density for (R(1),i(t), R(2),i(t)) does not depend on time so we will write it as [R(1),i, R(2),i].

This density is similar to that for order statistics and is given by

[R(1),i, R(2),i](r, s) = {[R1,i](r)[R2,i](s) + [R1,i](s)[R2,i](r)} I{r≤s} (S.13)

where [R1,i] and [R2,i] are log-normal densities with parameters (µR1,i , σ
2
R1,i

) and (µR2,i , σ
2
R2,i

)

respectively as described in Section 3.4.

Since the radii of path i at time tj are independent of the radii at other times or of other targets,

the density for (R(1),R(2)) is

[R(1),R(2) |W ](r, s) =
M∏
i=1

∏
{j:Wi,j=1}

[R(1),i, R(2),i](ri,j , si,j),

where ri,j and si,j are the arguments for the values of R(1),i(tj) and R(2),i(tj) respectively.

For false alarms, we will use similar notation. Let (R1,f,i(t) and R2,f,i(t)) be the length of minor

and major axes of the best fitting ellipse to the ith false alarm at time t. We observe the min and
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max of these which are R(1),f,i(t) and R(2),f,i(t) respectively. Also let

R(1),f = {(R(1),i(tj) : 1 ≤ j ≤ n, 1 ≤ i ≤ Nf (tj)},

and similarly for R(2),f .

The density for false alarms is very similar to that above, but all false alarms at all times are

assumed to have the same distribution so

[R(1),f,i(t), R(2),f,i(t)] = [R(1),f,i′(t), R(2),f,i′(t)] = [R(1),f , R(2),f ]

where

[R(1),f , R(2),f ](r, s) = {[R1,f ](r)[R2,f ](s) + [R1,f ](s)[R2,f ](r)} I{r≤s}

and [R1,i] and [R2,i] are respectively log-normal densities with parameters (µR1,f
, σ2

R1,f
) and (µR2,f

, σ2
R2,f

).

So the density of (R(1),f ,R(2),f ) is

[R(1),f ,R(2),f | N f ](r, s) =
n∏

j=1

Nf (tj)∏
i=1

[R(1),f , R(2),f ](ri,j , si,j)

where ri,j and si,j are the arguments for the values of R(1),f,i(tj) and R(2),f,i(tj) respectively.

S.1.3.2 Angle of Orientation Density

For target orientation or angle, we will use the following notation. Let Q2,i(t) be the angle of

orientation of the axis corresponding to R2 of the best fitting ellipse to target i at time t. We

actually observe Q(2),i(t) which is the angle that corresponds to R(2),i(t). Also let

Q(2) = {Q(2)(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}.

Consider for now a given target’s orientation at a fixed time Q(2),i(t). We will drop the subscript

i and argument t for now and write this asQ(2) to make notation less cumbersome. When R(2) = R2,

Q(2) = Q2. However, when R(2) = R1, Q(2) = bQ2 + π/2cpi where bxcy is x mod y.
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Hence, the distribution of Q(2) given (R(1), R(2)) is a mixture distribution that takes the value

of Q2 with probability γ and bQ2 + π/2cπ with probability 1− γ, where

γ = P (R1 < R2 | R(1), R(2))

=
[R1](R(1))[R2](R(2))

[R1](R(1))[R2](R(2)) + [R1](R(2))[R2](R(1))
. (S.14)

Thus the conditional density of Q(2),i is

[Q(2),i | R(1), R(2)](q) = γ[Q2,i](q) + (1− γ)[Q2,i](bq + π/2cπ), (S.15)

where [Q2,i] is the von Mises density on [0, π) given by

[Q2,i](q) =
eβicos(q−αi)

πΨ0(βi)
I[0,π)(q).

Here Ψ0(x) is a modified Bessel function of the first kind of order 0. As with the radii, Q(2),i(t) is

independent over time and of other targets so the conditional density of Q(2) is

[Q(2) | W,R(1),R(2)](q) =
M∏
i=1

∏
{j:Wi,j=1}

[Q(2) | R(1),i(tj), R(2),i(tj)](qi,j) (S.16)

where qi,j are the arguments for the values of Q(2),i(tj).

Again the situation for false alarms is very similar. We will let Q(2),f,i(t) be the angle of

orientation corresponding to R(2),f,i(t) and

Q(2),f = {Q(2),i(tj) : 1 ≤ j ≤ n, 1 ≤ i ≤ Nf (tj)}.

Let [Q2,f ] be the same density as in (S.15) only with parameters αf and βf in place of αi and βi.

False alarms are iid so

[Q(2),f (t) | W,R(1),R(2)](q)
n∏

j=1

Nf (tj)∏
i=1

[Q(2),f | R(1),f,i(tj), R(2),f,i(tj)](qi,j).
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S.1.3.3 Intensity Density

Let Ii(t) be the intensity of target i at time t. Also let

I = {Ii(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}.

For any target the density of Ii(t) does not depend on time so we will write it as [Ii]. Recall from

Section 3.4 that [Ii] is assumed to be a log-normal density with parameters (µIi , σ
2
Ii

). The density

of I is then

[I | W](ι)
M∏
i=1

∏
{j:Wi,j=1}

[Ii](ιi,j)

where as usual ιi,j are the arguments for the values of Ii(tj).

For false alarm intensity, we again assume the same density [If ] for all false alarms which is

log-normal with parameters (µIf
, σ2

If
). The density of If is then

[I | W](ι)
n∏

j=1

Nf (tj)∏
i=1

[If ](ιi,j).

S.2 Mean and Covariance Calculations

Here we calculate the mean functions E{Xi(t)}, E(Di) and the covariance functions Cov(Xi(s), Xj(t)),

Cov(Xi(s), Dj), and Cov(Di, Dj). Recall in Section S.1.1.3 that these are calculated before condi-

tioning on any merging events.

Let

B = {i : target i is an initial target or a birth}

S = {i : target i is the result of a splitting event}

M = {i : target i is the result of a merging event}

Also let n(B), n(S) and n(M) be the number elements in these sets respectively. The location

equations for a target resulting from birth, splitting and merging events from (3), (7) and (5) are
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given here again for convenient reference as

Xi(t) =



Xi(ξi) +X ′
i(ξi)(t− ξi) + σiGi(t− ξi) for i ∈ B

Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′s,i

]
(t− ξi) + σiGi(t− ξi) for i ∈ S

1
2

(
Xpi,1(ξi) +Xpi,2(ξi)

)
+ ψm,i+ for i ∈M[

1
2

(
X ′

pi,1
(ξi) +X ′

pi,2
(ξi)
)

+ ψ′m,i

]
(t− ξi) + σiGi(t− ξi)

where we are assuming that Gi(t) is an IBM. Also recall that we actually observe

X∗
i (tj) = Xi(tj)+εj for each time point tj . We give the target velocities for the three cases as well,

X ′
i(t) =



X ′
i(ξi) + σiBi(t− ξi) for i ∈ B

X ′
pi,1

(ξi) + ψ′s,i + σiBi(t− ξi) for i ∈ S

1
2

(
X ′

pi,1
(ξi) +X ′

pi,2
(ξi)
)

+ ψ′m,i + σiBi(t− ξi) for i ∈M.

Lastly we recall the expression for the variable Di = Xdi,1
(ξdi,3

)−Xdi,2
(ξdi,3

)+ψd,i, i = 1, . . . , n(M).

We will use the following notation to denote the means and covariance of path locations and

velocities

µi(t) = E{Xi(t)} (S.17)

µ′i(t) = E{X ′
i(t)}

γ∗i,j(s, t) = Cov(X∗
i (s), X∗

i (t)) (S.18)

γi,j(s, t) = Cov(Xi(s), Xj(t))

γ′i,j(s, t) = Cov(Xi(s), X ′
j(t))

γ′′i,j(s, t) = Cov(X ′
i(s), X

′
j(t))

γi(s, t) = Cov(Xi(s), Xi(t))

γ′i(s, t) = Cov(Xi(s), X ′
i(t))

γ′′i (s, t) = Cov(X ′
i(s), X

′
i(t))

Note that for the purposes of likelihood calculation, we are only interested in the functions

13



given in (S.17) and (S.18) above. However, the expressions for these two functions will depend on

the others, so in the following, we will need to derive expressions for all of these functions.

S.2.1 Mean Functions

We can express the mean functions for location for the three cases of birth, splitting and merging

events as a recursive formula,

µi(t) =



µX0 + (t− ξi)µX′
0

if i ∈ B

µpi,1(ξi) + (t− ξi)µ′pi,1
(ξi) if i ∈ S

1
2µpi,1(ξi) + 1

2µpi,2(ξi) + t−ξi

2

(
µ′pi,1

(ξi) + µ′pi,2
(ξi)
)

if i ∈M.

Eventually this recursion will lead back to a parent target which is an initial target or a birth, at

which point the recursion will terminate. We can also express the mean velocities for the three

cases in a similar manner,

µi(t) =



µX′
0

if i ∈ B

µ′pi,1
(ξi) if i ∈ S

1
2

(
µ′pi,1

(ξi) + µ′pi,2
(ξi)
)

if i ∈M.

Of course the mean of Di can be written as

E(Di) = µdi,1
(ξdi,3

)− µdi,2
(ξdi,3

).

S.2.2 Covariance Functions

Now we will consider the calculation of the covariance functions. First note that

γ∗i,j(s, t) = γi,j(s, t) + σ2
Xe
I{i=j}I{s=t}.
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Also, for Cov(Xi(s), Dj) and Cov(Di, Dj) we have

Cov(Xi(s), Dj) = γi,dj,1
(s, ξdj,3

)− γi,dj,2
(s, ξdj,3

)

Cov(Di, Dj) = γdi,1,dj,1
(ξd1,3 , ξdj,3

)− γdi,1,dj,2
(ξd1,3 , ξdj,3

)− γdi,2,dj,1
(ξd1,3 , ξdj,3

) +

γdi,2,dj,2
(ξd1,3 , ξdj,3

),

so we just need to derive an expression for γi,j(s, t). This will require the following definition. Let

two paths i and j be connected if one is a by-product of a splitting and/or merging of the other.

Define the indicator δi,j to be

δi,j =

{
1 if path i is connected to path j

0 otherwise.

It is clear that γi,j(s, t) = 0 whenever δi,j = 0, since paths are independent unless they are connected.

Consider now calculating the covariance function γi,j(s, t) when δi,j = 1, i < j and j ∈ S:

γi,j(s, t) = Cov
(
Xi(s) , Xpj,1(ξj) + ψs,j +

[
X ′

pj,1
(ξj) + ψ′s,j

]
(t− ξj) + σjGj(t− ξj)

)
= γi,pj,1(s, ξj) + (t− ξj)γ′i,pj,1

(s, ξj). (S.19)

Using this same idea, we can calculate the case for δi,j = 1, i < j and j ∈ M as well. If i < j and

j ∈ B then necessarily δi,j = 0. This is true because if i < j and j ∈ B, then because of the way

we have organized the indices, ξi ≤ ξj . Hence if j ∈ B then there is now way that path j or any

of its children could have split or merged to create path i since it existed already before path j.

Furthermore, path j resulted from a birth so there is also no way that it could be created from path

i or any of its children. Since we always decompose the larger index into the contribution from its

parents, we will eventually converge to the covariance of a parent(s) that is a birth or initial target

and the recursion will terminate.
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Hence we have

γi,j(s, t) =



γi(s, t) if i = j

γi,pj,1(s, ξi) + (t− ξi)γ′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γi,pj,1(s, ξi) + γi,pj,2(s, ξi)

)
+ t−ξi

2

(
γ′i,pj,1

(s, ξi) + γ′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γj,i(t, s) if δi,j = 1, i > j

0 otherwise.
(S.20)

We can also calculate γ′i,j(s, t) in the same manner as in (S.19). Although, now we cannot use

the symmetry of the function if i > j. So consider calculating γ′i,j(s, t) for the case when δi,j = 1,

i > j and i ∈ S. We still need to decompose the larger index into its parents, and we write this as

γ′i,j(s, t) = Cov
(
Xpi,1(ξi) + ψs,i +

[
X ′

pi,1
(ξi) + ψ′s,i

]
(s− ξi) + σiGi(s− ξi) , X ′

j(t)
)

= γ′pi,1,j(ξi, t) + (s− ξi)γ′′pi,1,j(ξi, t).

The other cases are similar and γ′i,j(s, t) can be written as

γ′i,j(s, t) =



γ′i(s, t) if i = j

γ′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γ′i,pj,1

(s, ξi) + γ′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γ′pi,1,j(ξi, t) + (s− ξi)γ′′pi,1,j(ξi, t) if δi,j = 1, i > j, j ∈ S

1
2

(
γ′pi,1,j(ξi, t) + γ′pi,2,j(ξi, t)

)
+ s−ξi

2

(
γ′′pi,1,j(ξi, t) + γ′′pi,2,j(ξi, t)

)
if δi,j = 1, i > j, j ∈M

0 otherwise.

We can calculate γ′′i,j(s, t) in the same way as in (S.20), since we again have symmetry in the
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function:

γ′′i,j(s, t) =



γ′′i (s, t) if i = j

γ′′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γ′′i,pj,1

(s, ξi) + γ′′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γ′′j,i(t, s) if δi,j = 1, i > j

0 otherwise.

Now for the function γi(s, t). We can use the same technique in (S.19) but decompose both

arguments to the covariance since they are the same path. For example, if target i is a birth or an

initial target, then we have

γi(s, t) = Cov
(
Xi(ξi) +X ′

i(ξi)(s− ξi) + σiGi(s− ξi) , Xi(ξi) +X ′
i(ξi)(t− ξi) + σiGi(t− ξi)

)
= σ2

X0
+ (s− ξi)(t− ξi)σ2

X′
0
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)), (S.21)

where for an IBM

Cov(Gi(s), Gi(t)) =
(s ∧ t)2(s ∨ t)

2
− (s ∧ t)3

6
.

If target i is a split then we have

γi(s, t) = Cov
(
Xpi,1(ξi) + ψs,i +

[
X ′

pi,1
(ξi) + ψ′s,i

]
(s− ξi) + σiGi(s− ξi) ,

Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′s,i

]
(t− ξi) + σiGi(t− ξi)

)
= γpi,1(ξi, ξi) + σ2

Xs
+ (t+ s− 2ξi)γ′pi,1

(ξi, ξi) + (s− ξi)(t− ξi)
(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+

σ2
i Cov(Gi(s− ξ), Gi(t− ξ)) (S.22)

and the calculation is very similar for a merging event. The general form for γi(s, t) is then given
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by

γi(s, t) =



σ2
X0

+ (s− ξi)(t− ξi)σ2
X′

0
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)) if i ∈ B

γpi,1(ξi, ξi) + σ2
Xs

+ (t+ s− 2ξi)γ′pi,1
(ξi, ξi)+

(s− ξi)(t− ξi)
(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ S

1
4

(
γpi,1(ξi, ξi) + γpi,2(ξi, ξi) + 2γpi,1,pi,2(ξi, ξi)

)
+ σ2

Xm
+

s+t−2ξi

4

(
γ′pi,1

(ξi, ξi) + γ′pi,2
(ξi, ξi) + γ′pi,1,pi,2

(ξi, ξi) + γ′pi,2,pi,1
(ξi, ξi)

)
+

(s−ξi)(t−ξi)
4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+

(s− ξi)(t− ξi)σ2
X′

m
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)) if i ∈M.

Using the same strategy as in (S.21) and (S.22) we can calculate γ′i(s, t) as

γi(s, t) =



(s− ξi)σ2
X′

0
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ B

γ′pi,1
(ξi, ξi) + (s− ξi)

(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ S

1
4

(
γ′pi,1

(ξi, ξi) + γ′pi,2
(ξi, ξi) + γ′pi,1,pi,2

(ξi, ξi) + γ′pi,2,pi,1
(ξi, ξi)

)
+

s−ξi

4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+ (s− ξi)σ2
X′

m
+

σ2
i Cov(Gi(s− ξ), G′

i(t− ξ)) if i ∈M.

For the IBM,

Cov(Gi(s), G′
i(t)) = E

{(∫ s

0
Bi(u)du

)
Bi(t)

}
=

∫ s

0
E {Bi(u)Bi(t)} du

=
∫ s

0
(u ∧ t)du

=
(s ∧ t)2

2
+ t(s− s ∧ t).
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Lastly, we can use the same strategy to calculate γ′′i (s, t),

γi(s, t) =



σ2
X′

0
+ σ2

i Cov(G′
i(s− ξ), G′

i(t− ξ)) if i ∈ B

γ′′pi,1
(ξi, ξi) + σ2

X′
s
+ σ2

i Cov(G′
i(s− ξ), G′

i(t− ξ)) if i ∈ S

1
4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+ σ2
X′

m
+

σ2
i Cov(G′

i(s− ξ), G′
i(t− ξ)) if i ∈M

and this completes the description of the covariances.

S.3 Further Details for the Tracking Estimate

In this section we give the details behind the calculation of the conditional density

[U ,V,P | Z = z](u, v, p) (S.23)

used to achieve our tracking estimate in (9).

In (S.12) of Section S.1 we have written out the density for

(U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af )

which is the collection of all of the variables in the model of Section 3. Here the script letter

denotes the collection of those variables for all targets at all times. For example, X = {(Xi(tj) :

j = 1, . . . , n; i = 1, . . . ,m} is the collection of all x-coordinate values for each target at all times it

was observed; see Section S.1.1.3.

Recall that W is the observability variable and Y is the y-coordinate. We also let A denote

the collection of all attribute variables we wish to include. For example we might have A =

(R(1),R(2),Q(2), I), which are the smallest radius, largest radius, angle of orientation and intensity

for targets respectively. Recall that the variable Nf (t) is the number of false alarms at time t

so that N f = (Nf (t1), . . . , Nf (tn)) contains the number of false alarms at each time point. The

remaining variables X f , Yf , and Af are the collection of x and y coordinates for false alarms and
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attributes for false alarms respectively.

We will use the density for (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ) to calculate the density in (S.23).

Notice that there is a one–to–one mapping

g : (P,Z) → (W,X ,Y,A,N f ,X f ,Yf ,Af ,Z).

So for a given Z, the information contained in P and (W,X ,Y,A,N f ,X f ,Yf ,Af ) is the same.

Let

g∗ : (P,Z) → (W,X ,Y,A,N f ,X f ,Yf ,Af )

be the function g without the last variable in its output. Then we can write

[U ,V,P | Z](u, v, p | z) = P{U = u,V = v,P = p | Z = z}

= P{U = u,V = v, (W,X ,Y,A,N f ,X f ,Yf ,Af ) = g∗(p, z) | Z = z}

= [U ,V, (W,X ,Y,A,N f ,X f ,Yf ,Af ) | Z](u, v, g∗(p, z) | z). (S.24)

It is assumed that the distribution of Z given (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ) is point uni-

form on the possible permutations of the values of (X ,Y,A,X f ,Yf ,Af ) within each time tj , so

[Z | U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](z | u, v, w, x, y, a, nf , xf , yf , af ) =
1∏n

j=1mj !
IB(z), (S.25)

where

B = {z : g∗(p, z) = (w, x, y, a, nf , xf , yf , af ) for some p}.

So we can calculate the likelihood of (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z) by multiplying the like-

lihood given in (S.12) by that in (S.25). To then obtain the density in (S.24), note that for a given

value of Z = z,

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af | Z] ∝ [U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z]

and also realize that for a given z, there are a countable number of arguments
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αi = (ui, vi, wi, xi, yi, ai, nf,i, xf,i, yf,i, af,i) that will make

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af | Z](αi | z) > 0.

There is actually a finite number of values of (X ,Y,A,X f ,Yf ,Af ) since they must be a permutation

of the values in Z at each time. But there could be as many as a countable number combinations

of births, deaths, splitting and merging events that could be represented by U and V. This means

that we must have

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af , | Z](αi | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z](αi, z)∑∞
j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z](αj , z)

=
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](αi)∑∞
j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](αj)

,

where the second equality comes from the fact that the contribution of Z to the density is a constant

by (S.25). Now by equation (S.24) we have

[U ,V,P | Z](u, v, p | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](u, v, g∗(p, z))∑∞

j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](uj , vj , g∗(pj , z)))
,

where {(uj , vj , pj) : j = 1, 2, . . . } is an enumeration of the possible tracking solutions.

As discussed in Section 4 we also wish to calculate the conditional density of (U ,V,P) given

Z = z and the event (U ,V,P) ∈ K, where K = {(ui, vi, pi) : i = 1, . . . ,K}. This is given by

[U ,V,P | Z, (U ,V,P) ∈ K](u, v, p | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](u, v, g∗(p, z))∑K

j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](uj , vj , g∗(pj , z))
.

S.4 Full Description of the Modified MHT Algorithm

As mentioned in Section 4.3, when we receive a new set of observations, Zj = (Z1(tj), . . . , Zmj (tj)),

at time tj we will assume that each observation Zi(tj) is either:

1. an observation from an existing target track,

2. the first observation from a target resulting from birth,
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3. the first observation from a target resulting from split,

4. the first observation from a target resulting from merger, or

5. a false alarm.

Existing tracks that do not receive a new observation to continue the track at time tj must either

1. go missing (stay missing), or

2. terminate.

At time t1 we consider all combinations of each observation treated as an initial target observa-

tion or a false alarm. Now assume that we have a set of solutions (hypotheses) for the observations

through time tj−1. We then take the new observations, Zj , at time tj and form updated solutions

based on all possible combinations of the possibilities listed above. We then hold on to only a

subset of these new solutions (those with the highest likelihood) to use to form solutions at the

next time step, tj+1. The actual number of solutions to make it through to the next time will vary.

Let max{Lj} be the likelihood of the best solution at time tj . At each time, tj , we hold on to all

solutions that have likelihood greater than cmax{Lj} where c < 1 is a user-defined parameter. In

the interest of speed, we also set a limit, Ks, for the maximum number of solutions that make it

through to the next time. The control parameters c and Ks will vary depending on the complexity

of the problem. In the problems of Sections 5 and 6 these were set to c = e−10 and Ks = 200.

Of course it is very inefficient to examine all possible combinations at each time, so we form

gates for each of the tracks. A gate is a prediction region for a new observation from a track at

time tj given the previous observations assumed to be part of the track. In Sections 5 and 6 we

used a confidence level of pg = 0.9999 for the gate or prediction region. We then limit the possible

observations for inclusion into a track to only those that fall into the gate for that track.

We can also do a similar form of gating for observations that we are considering to be the first

observations of new tracks resulting from the split of an existing track. We can form a prediction

region for (Xi(tj), Yi(tj))+(ψX,s, ψY,s). Recall that ψX,s is the random error term for the amount the

child’s x-location will be different from the parent’s at the time of split and similarly for ψY,s. This
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can be accomplished by simply adding σ2
Xs

and σ2
Ys

to the x and y components of the conditional

variance for the prediction of a new observation in a track. We can then form the prediction region

or gate using this inflated variance. We only consider pairs of new observations within this region

to possibly be a split pair from the existing track.

For a possible merging event, we can also form a similar region. We can compute the prediction

region for the difference between a pair of existing tracks plus a random ψd term, for example

(X1(tj) − X2(tj), Y1(tj) − Y2(tj)) + (ψX,d, ψY,d). Recall ψX,d is the random distance between the

parents at the time of a merging event. If the prediction region for this quantity includes zero, we

will consider possibility that these targets are the parents in a merging event.

Now suppose targets 1 and 2 can be considered as parents for a possible merging event. We

must also find an observation to possibly be the first observation of the track that they merge into.

So we must form another prediction region for 1/2(X1(tj)+X2(tj), Y1(tj)+Y2(tj))+ (ψX,m, ψY,m).

We would then only consider new observations within this region to be from a new track resulting

from the merging of tracks 1 and 2. Note that these prediction regions assume that the merging

event takes place at tj when it really would have taken place at some time in the interval (tj−1, tj),

but this seems to be adequate provided the time points are not too spread out.

The prediction regions described above can be calculated efficiently via the Kalman Filter by

ignoring the dependency resulting from merging and splitting. That is, the first observation is

assumed fixed and the others are calculated assuming the model given in (3) and independent

of other tracks. It is possible to improve these regions by using the innovations algorithm to

compute the conditional distribution of new observations from a track taking into account the

previous splitting and merging. This would also be more time consuming however, since the actual

covariances take longer to compute than those under the assumed independence of tracks.

In addition to gating, we can usually separate the entire tracking problem into several smaller

tracking problems that are “disjoint” from each other. That is, there are often situations where the

area (in space and time) that one group of targets occupies does not intersect the area that another

group of targets occupies. These groups of observations can be identified with a simple heuristic

approach and the algorithm described above can then be applied to each group separately.
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We now discuss a way to improve upon the approximate solution provided by the MHT. Suppose

we are running the algorithm on a fixed number, n, of time points, and we obtain the set of likely

solutions for the last time tn. Consider the following situation. The solution that would eventually

be optimal (have the highest likelihood) at time tn has a likelihood that is not very high early

on in the algorithm when considering only a subset of all the times. We can only hold on to a

limited number of possible solutions at each time, so it is possible that the optimal solution will be

discarded at an earlier time less than tn and thus never recovered.

In this case however, the MHT will likely produce a solution that is close to the optimal one.

We can improve the set of solutions obtained at the last time, tn, by a greedy exchange algorithm

similar to that described by Sethi & Jain (1987). This basically considers making several simple

changes to a solution. If a change results in an increased likelihood, then make the change. This

process continues until there are no more beneficial changes to be made.

There are many other changes that we could consider making to improve the performance of

the algorithm, but from initial results of the MHT, it seemed to do a very good job of classifying

the splitting and merging events correctly according to likelihood, as well as identifying the correct

correspondences of observations within tracks. However, where it seemed to struggle the most, was

to form short tracks that were made up only of false alarms. This is likely because it had to discard

the correct solution, before it realized it would have to pay a penalty when it eventually killed this

incorrect track after a short time. In any case, the greedy exchange algorithm we use here only

considers the possibility of changing short tracks (≤ k observations) into false alarm observations.

For the results in Sections 5 and 6 we set k = 3. Considering other possible changes in the greedy

exchange step would only improve results.

So for each of the solutions produced when the MHT finishes, we will go through and consider

changing any track with less than 4 observations to a collection of false alarm observations. If one

of these changes improve the likelihood, then we will keep it.
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S.5 Details on Parameter Estimation

In this section we describe how we estimate the parameters of the model given in Section 3. In

most cases these estimates are the maximum likelihood estimates (MLE’s). In some cases however,

the MLE would be too computationally expensive to compute, and we will use other reasonable

choices for estimates.

Also for first few time points of the MHT algorithm, some of the estimates given here cannot be

computed because there are two few data points. In these cases, we need an initial guess for some

of the parameter values. Here we simply used the midpoint (or geometric midpoint for variance

parameters) of the parameter limits for an initial guess until enough data was available to estimate

these parameters.

S.5.1 Parameters of the Event Model

The Event Model parameters are λ0, λb, λd, λs and λm. There is also the false alarm rate pa-

rameter, λf . For the Event Model parameters one can calculate approximate MLE’s based on the

approximate likelihood given in Section S.1.1.1. The MLE for λ0 is obviously

λ̂0 = N0,

where recall N0 is the initial number of targets.

Now consider the estimation of the death rate, λd. From the approximation in (S.4) we can

consider the Ud,j for j = 1, . . . , n as independent Poisson observations with parameter N̄jλd,j∆tj .

Recall that N̄j is the average number of targets alive in the interval [tj , tj+1). Denote the collection

of N̄j ’s by N̄ . Then the contribution to the likelihood in (S.5) from Ud is

[
Ud | N̄

]
(u) =

n∏
j=1

(N̄jλd,j∆tj)uje−N̄jλd,j∆tj

uj !
.
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So the derivative of the log likelihood is

d

dλd
log
[
Ud | N̄

]
(u) =

n∑
j=1

uj

λd
− N̄j∆tj . (S.26)

Setting (S.26) equal to zero gives

λ̂d =

∑n
j=1 Ud,j∑n

j=1 N̄j∆tj
.

In a similar fashion the approximate MLE’s of λb, λs and λm can be shown to be

λ̂b =

∑n
j=1 Ub,j∑n
j=1 ∆tj

λ̂d =

∑n
j=1 Us,j∑n

j=1 N̄j∆tj

λ̂d =

∑n
j=1 Um,j∑n

j=1(N̄j − 1)∆tj
.

Lastly, consider estimation of the false alarm rate, λf . The number of false alarms at each time

Nf (tj) is Poisson with parameter λf so the MLE for λf is

λ̂f =

∑n
j=1Nf (tj)

n
.

S.5.2 Parameters of the Observability Model

If we assume the simple iid model for missing observations, then the MLE for the observability

model parameter, Pd, is the ratio of the number of times the targets were observable to the number

of times they existed

P̂d =

∑M
i=1

∑n
j=1Wi(tj)I[ξi,ζi](tj)∑M

i=1

∑n
j=1 I[ξi,ζi](tj)

.

S.5.3 Location Parameters

The derivative of the location density is difficult to compute analytically because of the matrix

algebra involved. Exact MLE’s would then require a time consuming iterative method. We therefore

decided to use alternatives to the MLE’s for the location parameter estimates. We will present these

estimates for the x-coordinate parameters. The estimates for the y-coordinate parameters will be
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the same with the obvious notational changes.

S.5.3.1 White Noise Variance

We will first consider estimation of the white noise error variance σ2
Xe

. For the IBM model, the

observed location for a path is

X∗
i (tj) = Xi(ξi) + tX ′

i(ξi) + σ2
i

∫ tj−ξi

0
Bi(s)ds+ εi,j .

So if we make a derivative approximation, we have

Di,j

∆tj
=
X∗

i (tj+1)−X∗
i (tj)

∆tj
≈ X ′

i(ξi) + σ2
iBi(tj − ξi) +

1
∆tj

(εi,j+1 − εi,j).

If we then take the consecutive differences of the Dj/∆tj we have

D2
i,j =

Di,j+1

∆tj+1
− Di,j

∆tj

≈ σ2
i (Bi(tj+1 − ξi)−Bi(tj − ξi)) +

1
∆tj∆tj+1

(∆tjεi,j+2 − (∆tj+1 + ∆tj)εi,j+1 + ∆tj+1εi,j) .

The covariance of consecutive D2
j ’s is given by

Cov(D2
j , D

2
j+1) ≈ Kjσ

2
Xe
,

where

Kj = −∆tj(∆tj+1 + ∆tj+2) + ∆tj+2(∆tj + ∆tj+1)
∆tj∆t2j+1∆tj+2

.

Hence a method of moments estimate for the measurement error variance is

σ̂2
Xe

=
1
N

M∑
i=1

∑
j∈Oi

D2
i,jD

2
i,j+1

Kj
, (S.27)
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where Oi is the set of indices, j, that we have four consecutive times tj , tj+1, tj+2, tj+3 where the

ith target is observable,

Oi = {j : Wi(tj) = Wi(tj+1) = Wi(tj+2) = Wi(tj+3) = 1}

and N =
∑

i n(Oi) is the total number of terms in the sum in (S.27).

S.5.3.2 IBM Variance Scalar

For the estimate of the variance scalar σ2
i for the ith target, we will make use of the estimate for σ2

Xe

and use a local linear regression to estimate Xi(tj)’s given the observations X∗
i (tj) = Xi(tj) + εi,j .

Once we have an estimate for the Xi(tj)’s, we can form an estimate for σ2
i .

The criterion for selection of the bandwidth h will based on the following rule presented on

pages 100-101 of Schimek (2000). Dropping the subscript i, we have n observations X∗(tj) and we

wish to estimate X(tj). Denote this estimate as m̂(tj , h). Then as described in Schimek (2000),

the prediction risk is

E

 n∑
j=1

(X∗(tj)− m̂(tj , h))2

 = E

 n∑
j=1

(X(tj)− m̂(tj , h))2

+ σ2
Xe

(n− 2tr(S)) (S.28)

so
1
n

n∑
j=1

(X∗(tj)− m̂(tj , h))2 ≈
1
n

n∑
j=1

(X(tj)− m̂(tj , h))2 +
σ̂2

Xe

n
(n− 2tr(S)).

Since it is our goal to minimize the estimation risk which is the first term on the right side of (S.28),

we will use the bandwidth, h, that minimizes the quantity

R(h) =
1
n

n∑
j=1

(X∗(tj)− m̂(tj , h))2 −
σ̂2

Xe

n
(n− 2tr(S)).

We will only use this approach to estimate Xi(tj) if there are more than k observations for the ith

path. We set k = 6 in practice.

Now we turn to the problem of estimating σ2
i . We can do this in the following way. From the
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above discussion, we now have an estimate, X̂i(tj), for Xi(tj) and

X̂i(tj) ≈ Xi(0) + tX ′
i(0) + σ2

iGi(tj),

where Gi(t) is an IBM, Gi(t) =
∫ t
0 Bi(s)ds. The consecutive difference quotient is

D̂i,j

∆tj
=
X̂i(tj+1)− X̂i(tj)

∆tj
≈ X ′

i(0) +
σ2

i

∆tj
(Gi(tj+1)−Gi(tj)).

And taking consecutive differences of the D̂i,j/∆tj ’s gives

D̂2
i,j =

D̂i,j+1

∆tj+1
− D̂i,j

∆tj
≈ σ2

i

∆tj∆tj+1
(∆tjGi(tj+2)− (∆tj + ∆tj+1)Gi(tj+1) + ∆tj+1Gi(tj)) .

The variance of D̂2
i,j is then

Var(D̂2
i,j) ≈ Cjσ

2
i ,

where Cj is given by

Cj =
1

(∆tj∆tj+1)2

[
∆t2j

t3j+2

3
+ (∆tj + ∆tj+1)2

t3j+1

3
+ ∆t2j+1

t3j
3
−∆tj(∆tj + ∆tj+1)

(
t2j+1tj+2 −

t3j+1

3

)

−∆tj∆tj+1

(
t2j tj+2 −

t3j
3

)
−∆tj+1(∆tj + ∆tj+1)

(
t2j tj+1 −

t3j
3

)]
.

Hence a method of moments estimate for σ2
i is

σ̂2
i =

1
N

∑
j∈Oi

(D2
i,j)

2

Cj
(S.29)

where here Oi is the set of indices, j, that we have three consecutive times tj , tj+1, tj+2 where the

ith target is observable,

Oi = {j : Wi(tj) = Wi(tj+1) = Wi(tj+2) = 1}

and N =
∑

i n(Oi) is the total number of terms in the sum in (S.29).
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Again, we only estimate σ2
i in this way if we have greater than k = 6 observations for the ith

path. If the ith path has less than k observations, then we let σ2
i equal the weighted average of the

σ2
i estimates of the other paths.

S.5.3.3 Initial Conditions Parameters

To estimate the initial conditions parameters, µX0 , σX0 , µX′
0
, and σX′

0
, we will also take advantage

of the local regression fits X̂i(t). We can use the local regression to estimate Xi(ξi). Let ti,j be the

jth time at which the ith path is observed for j = 1, . . . , ni. We can then estimate X ′
i(ξi) as

X̂
′
i(ξi) =

X̂i(ti,1)− X̂i(ξi)
ti,1 − ξi

.

If the ith path has fewer than k = 6 observations, then we can simply let X̂i(ξi) = Xi(ti,1) and

X̂
′
i(ξi) = (Xi(ti,2)−Xi(ti,1))/(ti,2 − ti,1).

Let B = {i : target i is a an initial target or a birth}, and let n(B) be the number elements in

B. We can construct estimates for the initial conditions parameters as

µ̂X0
=

1
n(B)

∑
i∈B

X̂i(ξi)

σ̂2
X0

=
1

n(B)

∑
i∈B

(
X̂i(ξi)− µ̂X0

)2

µ̂X′
0

=
1

n(B)

∑
i∈B

X̂
′
i(ξi)

σ̂2
X′

0
=

1
n(B)

∑
i∈B

(
X̂
′
i(ξi)− µ̂X′

0

)2
.

S.5.3.4 Splitting and Merging Parameters

Here we will construct estimates for the parameters involved in the initial conditions of splitting

or merging events, σXs , σX′
s
, σXm , σX′

m
, and σXd

. In order to do this we need estimates for Xi(ζi)

and X ′
i(ζi). We can also use the local regression to estimate Xi(ζi) and in a similar manner we can

estimate X ′
i(ξi) as

X̂
′
i(ζi) =

X̂i(ζi)− X̂i(ti,n)
ζi − ti,n

.
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Adopt the convention of Section 3.3 and denote the indices of the parents of target i (if it has

any) as pi,1 and pi,2. Recall that σXs is the variance of

ψs,i = Xpi,1(ξi)−Xi(ξi)

and σX′
s

is the variance of

ψ′s,i = X ′
pi,1

(ξi)−X ′
i(ξi)

for any path i that is the child of a splitting event. If we let S = {i : target i is the child of a splitting event}

and n(S) be the number elements in S, then we can construct estimates for these parameters as

σ̂2
Xs

=
1

n(S)

∑
i∈S

(
X̂pi,1(ζpi,1)− X̂i(ξi)

)2

σ̂2
X′

s
=

1
n(S)

∑
i∈S

(
X̂
′
pi,1

(ζpi,1)− X̂
′
i(ξi)

)2
.

Similarly, σXm is the variance of

ψm,i =
1
2
Xpi,1(ξi) +

1
2
Xpi,2(ξi)−Xi(ξi)

and σX′
m

is the variance of

ψ′m,i =
1
2
X ′

pi,1
(ξi) +

1
2
X ′

pi,2
(ξi)−X ′

i(ξi)

for any path i that is the child of a merging event. So letM = {i : target i is the child of a merging event}

and we can construct estimates of these parameters as

σ̂2
Xm

=
1

n(M)

∑
i∈M

(
1
2
X̂pi,1(ζpi,1) +

1
2
X̂pi,2(ζpi,2)− X̂i(ξi)

)2

σ̂2
X′

m
=

1
n(M)

∑
i∈M

(
1
2
X̂
′
pi,1

(ζpi,1) +
1
2
X̂
′
pi,2

(ζpi,2)− X̂
′
i(ξi)

)2

.
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Lastly, σXd
is the variance of

ψd,i = Xpi,1(ξi)−Xpi,2(ξi)

for any path i that is the child of a merging event. So its estimate is given by

σ̂2
Xm

=
1

n(M)

∑
i∈M

(
X̂pi,1(ζpi,1)− X̂pi,2(ζpi,2)

)2
.

S.5.4 Size Parameters

Estimation of the size parameters µR1,i , σR1,i , µR2,i , and σR2,i is complicated by the restriction that

mean size must be conserved. Let the size of a target i be defined to be Si(t) = R1,i(t)R2,i(t) as in

Section 3.4. So the constraints are that

E(Si) + E(Si+1) = E(Spi,1) (S.30)

if targets i and i+ 1 are the children of a splitting event and

E(Si) = E(Spi,1) + E(Spi,2) (S.31)

if target i is the child of a merging event.

A brief overview of the plan here is to first estimate the mean size for each target, E(Si), under

the constraints above. Then estimate the scale parameter, σ2
Si

, for Si. We will use these to obtain

an estimate for the shape parameter, µSi , of Si. Lastly, we can then estimate the parameters µR1,i ,

σR1,i , µR2,i , and σR2,i by maximum likelihood under the constraints that µR1,i + µR2,i = µSi and

σ2
R1,i

+ σ2
R2,i

= σ2
Si

. This procedure will ensure that the mean size is conserved by these parameter

estimates.

Again let ti,j be the jth time at which the ith path is observed for j = 1, . . . , ni. Notice

that for size we do not have the ambiguity problem that can occur with the radii. For example

S = R1R2 = R(1)R(2), so estimating the actual parameters of the size, Si, is not complicated by
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only observing the order statistics of the radii. To first estimate the E(Si), we used a weighted

least squares approach. The weights are to be inversely proportional to the sample variance of

the observations for Si. Let Var(Si) denote the sample variance of the Si(ti,j) observations for

j = 1, . . . , ni. Then we wish to find the values of E(Si) that minimize

M∑
i=1

ni∑
j=1

1
Var(Si)

{Si(ti,j)− E(Si)}2 (S.32)

subject to the constraints in (S.30) and (S.31). This is carried out using the Lagrangian Multiplier

method. Denote the resulting minimizers of expression (S.32) as Ê(Si).

We will then estimate the scale parameter for Si, σ2
Si

= σ2
R1,i

+ σ2
R2,i

by the unconstrained

MLE. This is just the sample variance of the log(Si(ti,j)) observations for j = 1, . . . , ni. Denote

this estimate as σ̂2
Si

. Notice that since Si is log-normal

E(Si) = e
µSi

+ 1
2
σ2

Si ,

where µSi = µR1,i + µR2,i is the shape parameter of Si. So once the estimates Ê(Si) and σ̂2
Si

are

obtained, we can let

µ̂Si
= log{Ê(Si)} −

1
2
σ̂2

Si
.

Finally, we can estimate the parameters µR1,i , σR1,i , µR2,i and σR2,i by maximum likelihood

under the constraints that µ̂R1,i
+µ̂R2,i

= µ̂Si
and σ̂2

R1,i
+σ̂2

R2,i
= σ̂2

Si
. If we set µR2,i = µSi−µR1,i and

σ2
R2,i

= σ2
Si
−σ2

R1,i
, this is equivalent to the estimation of µR1,i and σR1,i with µR1,i unconstrained and

σR1,i confined to the interval (0, σ̂2
Si

). Recall from equation (S.13) that this likelihood is a product

of sums, and we will therefore need an iterative method to maximize it. Thus this estimation is

carried out using a Newton Raphson algorithm. Notice however that this is only a two dimensional

maximization and we can use the unconstrained MLE’s assuming R1 = R(1) for the parameters as

starting points. The optimization can therefore be carried out quite quickly. This is the reason

we chose to first reduce the problem to a two dimensional estimation for each target instead of

applying a Newton Raphson approach to the entire problem to begin with.
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S.5.5 Orientation Parameters

For the estimation of the angle of orientation parameters, αi and βi, we again use maximum

likelihood. Recall from (S.14) and (S.15) that the likelihood for the Qi(tj) depends on the R(1),i(tj),

R(2),i(tj) and their corresponding parameters µR1,i , σR1,i , µR2,i , and σR2,i . So we can substitute the

parameter estimates µ̂R1,i
, σ̂R1,i , µ̂R2,i

, and σ̂R2,i from Section S.5.4 into the density for Q given

in (S.16). We then again use Newton Raphson to find the values of αi and βi that maximize the

likelihood given in (S.16).

S.6 Detailed Simulation Results

In this section, we present some results of the tracking algorithm on simulated data. For all of

these simulations, the data, Z, is assumed to come from the model given in Section 3. The random

motion component, Gi(t) is an integrated Brownian Motion for all targets. The parameters used

to simulate the different cases will be given below. All of the simulations use common location

parameters. These values were meant to make the target tracks produced from the model behave

like the storm tracks of Section 6. So in all of the realizations we set, µX0 = −113, σ2
X0

= 100,

µX′
0

= 1.5, σ2
X′

0
= .1, σ2

i = 0.1 for all i, σ2
Xs

= .5, σ2
X′

s
= .01, σ2

Xm
= .125, σ2

X′
m

= .01, σ2
Xd

= 1,

σ2
Xe

= 0, µY0 = 37.5, σ2
Y0

= 100, µY ′
0

= 0, σ2
Y ′
0

= 2, η2
i = .1 for all i, σ2

Ys
= .5, σ2

Y ′
s

= .5,

σ2
Ym

= .125, σ2
Y ′

m
= .01, σ2

Yd
= 1, and σ2

Ye
= 0, where µX0 , σ

2
X0
, . . . , σ2

Xe
are defined in Section 3.3.

The parameters µY0 , σ
2
Y0
, . . . , σ2

Ye
are the counterparts for the y-coordinate. Also σ2

i and η2
i are the

variance scalars multiplied to Gi(t) in equations (3), (5), and (7) for Xi(t) and Yi(t) respectively.

All of these simulations allow for false alarms to appear at each time with rate λf = 8.0 so we

can expect about 8 false alarms at each time. We also set the probability of detection Pd = 0.95.

The parameters λ0, λb, λd, and λs, and λm are different for each simulation and will be described

for each case.

For the parameter estimation, we restricted the parameter values to the followings sets λ0 ∈

[0, 25], λf ∈ [0, 25], λb ∈ [0.001, .25], λd ∈ [0.001, .15], λs ∈ [0.001, .15], λm ∈ [0.001, .15], Pd ∈

[0.5, 1.0], µX0 ∈ [−120,−85], σ2
X0

∈ [500, 1000], µX′
0
∈ [0, 5], σ2

X′
0
∈ [0.001, 5.0], σ2

i ∈ [0.001, 10.0],

σ2
Xs

∈ [0.001, 1.5], σ2
X′

s
∈ [0.0, 1.0], σ2

Xm
∈ [0.001, 0.5], σ2

X′
m
∈ [0.0, 1.0], σ2

Xd
∈ [0.001, 5.0], σ2

Xe
∈
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[0.0, 1.0], µY0 ∈ [25, 50], σ2
Y0
∈ [500, 1000], µY ′

0
∈ [−5, 5], σ2

Y ′
0
∈ [0.5, 10.0], η2

i ∈ [.001, 10.0], σ2
Ys
∈

[0.001, 1.5], σ2
Y ′

s
∈ [0.0, 1.0], σ2

Ym
∈ [0.001, 0.5], σ2

Y ′
m
∈ [0.0, 1.0], σ2

Yd
∈ [0.001, 5.0], and σ2

Ye
∈

[0.0, 1.0].

There are six cases that we considered here:

(i) Birth only For this simulation we set λ0 = 2.0, λb = 0.20 so that we would have an average

of approximately 2 births in a time interval [0, 9]. We then set λd = λs = λm = 0 so we

could isolate the tracking algorithm’s ability to identify birth events. We also restricted the

simulation to the set of realizations that have at least one birth event.

(ii) Death only In these simulations, we set λ0 = 4.0, λd = 0.10. This makes for an average of

about 2.5 deaths in the time interval and we restricted our focus to the set of realizations

that had at least one death. We then set λb = λs = λm = 0.

(iii) Splitting only In the splitting only simulations, we forced there to be exactly one target

that split into two targets at a random uniformly distributed time in the interval (1.0, 8.0).

(iv) Merging only In a similar manner to the splitting only simulations, the merging only simu-

lations, have exactly one merger by two targets at a uniformly distributed time in the interval

(1.0, 8.0).

(v) Completely Random These are completely unrestricted realizations from the model with

event parameters set as λ0 = 4, λb = 0.1, λd = .02, λs = 0.06, and λm = .08.

(vi) Completely Random w/ Size These are the same realizations as in case (v) but now with

size information to be used in the tracking algorithm. The radius variables R(1) and R(2) are

being used along with location here to compute the likelihood.

For each realization we would generate two random variables z1 ∼ N (0.6, .01), z2 ∼ N (0.8, .01)

and set µR1,i = z1 ∧ z2, µR2,i = z1 ∨ z2. We then set the log-normal scale parameters,

σ2
R1,i

= σ2
R2,i

= 0.025 for all i. In the parameter estimation, parameter limits for size were set

for µS,i = µR1,i +µR2,i and σ2
S,i = σ2

R1,i
+σ2

R2,i
. The parameter limits for µS,i were set to be the

min and max of the observed values of the log sizes, µS,i ∈ [min{log(Si,j)},max{log(Si,j)}]
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and σ2
S,i ∈ [0.001, 1.0]. Also recall that µS,i is also restricted by merging and splitting so that

the mean size of the parent(s) adds to the mean size of the child(ren). The radius parameters

were otherwise free in the maximum likelihood estimation.

We set the false alarm size parameters to µR1,f
= 0.00, µR2,f

= 0.25, and σ2
R1,f

= σ2
R2,f

= 0.25.

This produces false alarms that are smaller than targets on average, but possibly similar in

size to small or medium size targets.

For each case we generated N = 100 realizations. These simulations take place on the time

interval [0, 9] with ∆tj = 1 for all j so that t = (0, 1, . . . , 9). An example of a realization from the

completely random (CR) model was given in Figure 5 in the main article. We wish to investigate

the same hypotheses 1-4, posed in the previous section now with the presence of clutter (i.e., false

alarms).

In these simulations we have the following hypotheses we wish to investigate.

1. The percentage of births, deaths, splits, and mergers labeled correctly in each of the first four

simulations respectively, will be roughly equal to the rates of correctly labeled events in the

full model realizations of simulation (v).

2. Since birth is symmetric to death in reverse time, we would expect that the rate of correctly

labeled births would be similar to that of correctly labeled deaths.

3. Since also splitting is symmetric to merging in reverse time, we would expect that the rate of

correctly labeling these two events would be similar.

4. The results with additional size information in simulation (vi) should be an improvement over

those in simulation (v).

S.6.1 Simulation Results for Cases (i)-(vi)

The simulation results of each of the six cases are given as the columns of Table S.1. In the following

we describe each of the summary statistics that make up the rows of Table S.1.

% Best Est Correct This is the percentage of times that (Û , V̂, P̂) from (12) was equal to the

correct solution (U ,V,P).
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Birth Death Split Merge CR CR w/Size
% Best Est Correct 72.0 60.0 61.0 82.0 67.0 92.0

% Births Correct 94.8 - - - 83.1 100.0
% Deaths Correct - 79.2 - - 70.2 95.7
% Splits Correct - - 93.0 - 87.0 100.0

% Mergers Correct - - - 97.0 90.7 98.7
% Targets Correct 99.3 99.0 98.9 99.9 99.0 99.8

% FAs Correct 97.4 95.2 97.4 99.5 99.2 99.6
% Falling in 95% CS 94.0 79.0 86.0 98.0 81.0 96.0

(5%) 0.015 0.000 0.001 0.059 0.000 0.068
Prob of True (25%) 0.292 0.090 0.074 0.598 0.207 0.996

(50%) 0.850 0.685 0.746 0.947 0.996 0.996
(5%) 0.315 0.209 0.294 0.363 0.265 0.790

Prob of Best Est (25%) 0.614 0.508 0.583 0.695 0.582 0.996
(50%) 0.906 0.877 0.891 0.947 0.996 0.996
(5%) 0.881 0.610 0.831 0.938 0.856 1.000

Track Purity (25%) 1.000 1.000 1.000 1.000 0.956 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000
(5%) 0.903 1.000 0.997 1.000 0.869 1.000

Prob of Target (25%) 1.000 1.000 1.000 1.000 1.000 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000
(5%) 0.922 0.705 0.897 0.922 1.000 1.000

Prob of FA (25%) 1.000 1.000 1.000 1.000 1.000 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000

Table S.1: Results of 100 Realizations With Clutter

% Births Correct Percentage of all birth events in the simulation that were labeled correctly by

the estimate, (Û , V̂, P̂).

% Deaths Correct Percentage of all death events in the simulation that were labeled correctly

by the estimate.

% Splits Correct Percentage of all splitting events in the simulation that were labeled correctly

by the estimate.

% Mergers Correct Percentage of all merging events in the simulation that were labeled correctly

by the estimate.

% Falling in 95% CS We form a 95% confidence set of solutions for each realization. This is the

percentage of times that the 95% confidence set contained the correct solution.
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Prob of True This is the estimated posterior probability that the correct solution, (U ,V,P),

is correct calculated using (13). These three rows are respective quantiles from the 100

realizations for these probabilities

Prob of Best Est This is the estimated probability that the estimate (Û , V̂, P̂) in (9) is correct

given the data, again presented by the quantiles.

Track Purity These three rows are quantiles for the overall track purity for each realization. The

overall track purity is defined in the paragraph below.

% Targets Correct This is the percentage of all targets at all times in the simulation that were

labeled correctly as targets by the estimate (Û , V̂, P̂).

% FAs Correct Percentage of all false alarms in the simulation that were labeled correctly by

the estimate.

Prob of Target This is the probability given the data that a given target at the last time step

should be labeled a target. The three rows are the quantiles of these probabilities over all of

the targets in the last time step in all of the realizations.

Prob of FA This is the same as “Prob of Target” only for false alarms.

We present a definition of track purity that is slightly different than that given by Mori, Chang,

Chong & Dunn (1986). In the correct solution, (U ,V,P), consider a given track i composed of

observations produced by target i. Of all the tracks that make up the estimate (Û , V̂, P̂), find the

track i′ that contains the most observations in common with track i in (U ,V,P). The track purity

for track i is defined to be the proportion of the observations that make up track i that are also

part of track i′ in the estimate (Û , V̂, P̂). The overall track purity is then the weighted average (by

number of observations in the track) of individual track purities.

For example if (U ,V,P) had two tracks; track 1 with 5 observations and track 2 with 10

observations. And the estimate, (Û , V̂, P̂), has three tracks; track 1, track 2, and track 3. Where

track 1 in (Û , V̂, P̂) is identical to track 1 in (U ,V,P). Track 2 in (Û , V̂, P̂) is the first 7 observations

of track 2 in (U ,V,P) and track 3 in (Û , V̂, P̂) is the last 3 observations of track 2 in (U ,V,P).
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Then the track purity for track 1 is 1.0. The track purity for track 2 is 0.7 and the overall track

purity is [5(1.0) + 10(0.7)]/15 = 0.8.

Now refer back to the four hypotheses we posed earlier. Recall that the first hypothesis states

that the first four simpler simulations will translate their error rates to the more complicated CR

model case. From Table S.1 we can see that the percentage of births labeled correctly in the birth

only simulation (94.8%) is somewhat higher than that in the CR model (83.1%). The percentage

of deaths labeled correctly in the death only case (79.2%) is also a bit higher than that for the

CR model (70.2%). The percentage of splits correct in the splitting only case is closer to the CR

model, (93.0%) versus (87.0%). Lastly the percentage of mergers correct in the merging only case

is also slightly higher than in the CR model, (97.0%) to (90.7%). So it appears that these rates for

the first four simulations are in general a little bit higher than those for the CR model simulation.

For the second hypothesis, the percentage of births correct in the birth only case (94.8%) is

again a bit higher than the percentage of deaths correct in the death only case (79.2%). This is

again likely due to deaths near the end of the time window and high death rate resulting in shorter

tracks. In fact, the fifth percentile for track purity in the death only case is only 0.610 here which

leads us to believe there are a few instances where the algorithm decided to label a short track as

clutter instead of paying the price for a death.

For the third hypothesis, the percentage of splits correct in the splitting only case (93.0%) is

again quite similar to the percentage of mergers correct in the merging only case (97.0%). So again

there is a good indication that third hypothesis is correct.

Recall that the last hypothesis says that the size information will improve the results. This

was not abundantly clear in the simulations without clutter. However, in the presence of clutter,

the size information adds quite a bit of discernment power. The percentage of correct estimates

jumps from 67.0% for the CR model without size to 92.0% for the CR model with size. Also if

we look at the probability given the data that the correct solution is correct we see that these

are substantially higher when we include size. Lastly, the coverage of the 95% confidence sets is

significantly improved from 81.0%, to 96.0% when we use size in the algorithm.
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The coverage of the 95% confidence sets for these simulations (94.0%, 79.0%, 86.0%, 98.0%,

81.0%, and 96.0% for simulations 1-6 respectively) dropped off some from the simulations without

clutter. One explanation for this, referring back to (10), is that these sets assume that that the

correct answer is in the collection of solutions we obtained from the MHT algorithm. If it is not

always in this collection, then of course our distribution of solutions given in (10) will not be correct.

Also, since we estimate parameters for each of the possible solutions, this also introduces some bias.

Overall though, these confidence sets and probabilities provide us with at least a rough guide as to

how confident we should be in the estimated solution(s).

Notice that although the estimate is not always the correct solution for these simulations, the

track purity values are always high. Only 5% of track purities for any of the cases was below 0.88

with the exception of the death only simulation which had 5% below 0.610. The percentages of

Targets correct and false alarms correct were also uniformly high. These were usually around 99%

for most cases and never lower than 95.2% for any of the simulations.

S.6.2 Decreasing Time Increments

The set of simulations considered in the section uses a model identical to that of the CR model

realizations with clutter of Section S.6.1. Here however, we use three different time increments,

∆t = 1.0, ∆t = 0.5, and ∆t = 0.1. The conjecture here is that there is a convergence of the

estimate to the correct solution as the time increment approaches zero.

From Table S.2 we can see that the estimation does improve substantially as ∆t becomes

smaller. We see a dramatic improvement in the number of correct estimates. The percentage goes

from 67.0% for the ∆t = 1.0 case, to 79.0% for the ∆t = 0.5 case, to 99.0% for the ∆t = 0.1 case.

Also for the probability of the correct solution given the data, 25% of the ∆t = 1.0 probabilities

are less than 0.207, but only 5% of the ∆t = 0.1 probabilities are less than 0.834. It appears as

though there is a convergence of this estimate to the correct solution.
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CR, ∆t=1.0 CR, ∆t=0.5 CR, ∆t=0.1
% Best Est Correct 67.0 79.0 99.0

% Births Correct 83.1 88.2 100.0
% Deaths Correct 70.2 91.1 98.2
% Splits Correct 87.0 95.7 100.0

% Mergers Correct 90.7 97.7 100.0
% Targets Correct 99.0 99.7 100.0

% FAs Correct 99.2 99.9 100.0
% Falling in 95% CS 81.0 90.0 100.0

(5%) 0.000 0.006 0.834
Prob of True (25%) 0.207 0.622 0.994

(50%) 0.996 0.970 0.996
(5%) 0.265 0.499 0.836

Prob of Best Est (25%) 0.582 0.803 0.994
(50%) 0.996 0.974 0.996
(5%) 0.856 0.940 1.000

Track Purity (25%) 0.956 1.000 1.000
(50%) 1.000 1.000 1.000
(5%) 0.869 0.999 1.000

Prob of Target (25%) 1.000 1.000 1.000
(50%) 1.000 1.000 1.000
(5%) 1.000 1.000 1.000

Prob of FA (25%) 1.000 1.000 1.000
(50%) 1.000 1.000 1.000

Table S.2: Results of 100 Realizations With Decreasing ∆t

S.7 Detection Algorithm

The problem of target or object identification in images has been studied quite thoroughly. It is not

our goal to make a contribution in this area, hence a detailed description of these techniques will

not be given. We simply describe the details of the particular identification technique we chose to

use on the storm tracking problem. For a good summary of other imaging techniques, see Rosenfeld

& Kak (1982).

Recall, the goal of the detection algorithm is to go through each image and record the location

of each target (storm) that it finds. In our case, we will record the size and orientation of the

storms as well.

An image consists of intensity values Ii,j for each of the pixels. We start by thresholding the

intensities at a value α. At this point, all pixels with intensities Ii,j < α will be set to zero. We
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then consider all of the pixels with Ii,j > α and we wish to group these pixels together to make up

the targets.

Simply stated, all pixels with Ii,j > α that are “connected” to each other are part of the same

target. There are two common definitions of connected pixels. Two pixels are 4-connected if they

share one of their 4 sides with each other. Two pixels are 8-connected if they share a common side

or corner. We have found that the 4-connected definition works well for the storms problem, but

certainly the best one to use is problem dependent.

We now have a collection of targets, defined by their corresponding cluster of pixels. To specify

location, size and orientation of the targets, we fit an ellipse to each target (cluster of pixels). This

can be accomplished by estimating a bivariate Gaussian distribution for each target and using the

99% contour of the density.

The mean and covariance of the Gaussian distribution used to fit an ellipse to a given target

are given by the following. Suppose xi,j , yi,j , are the coordinates of the center of pixel i, j. The

moments for a given target are given by

µ̂x =
∑ Ii,jxi,j∑

Ii,j

and similarly for µ̂y, σ̂x, σ̂y, and σ̂xy where the sum is taken over the pixels (i, j), that compose

that target.

The location of the target is then given by (µ̂x, µ̂y). The length of the radii R(1) and R(2) of the

target are given by the minor and major axes of the 99% contour ellipse. The angle of orientation

Q(2) is also obtained from the ellipse. Refer to Figure 4 for an illustration of this.

For this application, the pixel intensities ranged anywhere from 0.00 to 150.00 mm/hour of

rainfall which roughly equates to 0.0 to 6.0 inches of rain per hour. Most pixels that made up

storms had intensities between 1.00 and 10.00 mm/hour. We used a threshold of α = 0.10 with

the 4-connected definition. In addition, we are only considering mesoscale systems here, which are

storms with R2 > 1◦. All other storms are discarded, so this could be considered a second stage of

thresholding.
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